New Real-world Instances for the Steiner Tree Problem in Graphs

Markus Leitner¹, Ivana Ljubić¹, Martin Luipersbeck², Markus Prossegger³, Max Resch²

January 13, 2014

Abstract

This work deals with the creation and optimization of real-world instances in the design of telecommunication networks. We propose two new sets of benchmark instances for the Steiner tree problem in graphs, which is one of the fundamental network optimization problems. Our instances are large, sparse graphs that contain over 100 000 nodes and originate from real-world applications of deploying last-mile fiber-optic networks. To obtain a rough estimate on the hardness of the new instances, we measured the performance of preprocessing techniques and of an exact algorithm based on branch-and-cut. This work shall establish a missing link between the real world and the mathematical modeling and optimization of telecommunication networks.

1 Introduction

One of the fundamental problems in the design of telecom networks is the Steiner tree problem in graphs (STP) which searches for a subtree in an edge-weighted graph that connects a subset of nodes (called *terminals*) at minimum cost. The performance of algorithms for the STP is usually evaluated through practical experiments on publicly available sets of benchmark instances (e.g., SteinLib [10]). However, at the time of this paper, only a relatively small number of these instances include real-world graphs with more than 10 000 nodes. The main purpose of this article is to establish a missing link between the real-world input data and the mathematical modeling and optimization of telecommunication networks. To this end, we propose *two new sets of benchmark instances* that contain a huge number of nodes (up to 100 000) and that represent edge-weighted graphs based on spatial data.

¹Department of Statistics and Operations Research, University of Vienna, Austria markus.leitner@univie.ac.at, ivana.ljubic@univie.ac.at

²Vienna University of Technology, Austria

martin.luipersbeck@alumni.tuwien.ac.at, max.resch@alumni.tuwien.ac.at ³Carinthia University of Applied Sciences, Klagenfurt, Austria

m.prossegger@cuas.at

The presented instances should be of broader interest for the network optimization community since they originate from real-world problems that appear in practical network design. To ensure that the instances pose a challenge to state-of-the-art exact methods for solving the STP, we applied preprocessing techniques and a branch-and-cut algorithm. The remainder of this paper is structured as follows: In Section 2, we provide information about the set of new benchmark instances. In Sections 3 and 4, we describe the applied preprocessing techniques and the branch-and-cut algorithm, respectively. In Section 5, we present the computational results. Concluding remarks are made in Section 6.

2 New Benchmark Instances

The STP is known to be \mathcal{NP} -hard [8] and can be formally defined as follows: Let G = (V, E, c) be an edge-weighted undirected graph with a weight function $c : E \to \mathbb{Z}^+$ and a set of terminals $T \subseteq V$. The goal is to find a connected subgraph $S = (V_S, E_S)$ of G for which $T \subseteq V_S$ and the sum of edge weights $\sum_{e \in E_S} c_e$ is minimal. Nodes from $V \setminus T$ are also called *Steiner nodes*.

In this section we provide some details on the generation of instances originating from spatial data (more detailed information can be found in Prossegger [12]). The instances were created using land use data covering part of a city and its surrounding rural environment. More precisely, the following information is used:

- 1. spatial polygon data describing the land use of an area, and
- 2. point-objects, describing customer locations.

Spatial data originates from the Austrian digital cadastral map that contains information on parcel's boundaries of all public and private properties. It also documents the type of land use of each parcel as well as buildings. *Edges* of the graph represent the *contours* and emphcrossings of spatial polygon-objects. *Steiner nodes* are spatial point-objects on edge crossings. *Terminals* are spatial point-objects representing centroids of buildings. To ensure data privacy, terminals in our instances are chosen as random subsets of artificial customer locations.

Since we are dealing with graphs modeling the deployment of fiber optic telecommunication networks, *edge weights* are obtained as *averaged construction costs*, including costs for the underground work and costs for building cable poles in a correct proportion. The type of the land use (e.g., building land, forest, highway, street,...) determines the costs for the underground work.

The instances are divided into two sets:

GEO-Instances: This set contains 23 instances originating from an Austrian city, with different deployment areas and different density concerning the number of terminals. The graphs contain between 42 481 and 235 686 nodes, 52 552 and 366 093 edges, and between 88 and 6313 terminals. These basic instance properties, namely |V|, |E| and |T|, are listed in Table 2. Figures 1 to 3 show GEO instances and their optimal solutions, plotted with coordinates in-

cluded in the instance files. The *simple preprocessing step* (see below) was skipped for the GEO instances, it deemed unnecessary, hence no comparison data is available for this step.

I-Instances: This set contains 85 instances representing deployment areas from various Austrian cities, but they also include rural areas with smaller population density and very sparse infrastructure. The coordinates and construction data of the set I cannot be disclosed to the public. The instances we publish are modified in a way that does not allow inference of the original data. This is the reason why only *simple preprocessed data* (see below) is available for the I-instances. The underlying graphs contain between 7886 and 178 810 nodes, 9265 and 239 552 edges, and between 38 and 4991 terminals. Table 3 provides |V|, |E| and |T| for each single instance of this set.

3 Preprocessing

The aim of preprocessing is to simplify all instances prior to using a time-consuming exact algorithm. Table 1 lists all used tests. For a description of the tests, the reader is referred to the works of Uchoa, Aragão, and Ribeiro [15] and Duin [6].

We first apply a *simple preprocessing* procedure in which degree reduction tests (NTD1 and NTD2) are executed exhaustively. Then we continue with an *advanced preprocessing* procedure as proposed by Ribeiro, Uchoa, and Werneck [13], using their publicly available implementation Bossa [bossa]. Algorithm 1 presents a short description of the preprocessing procedure's structure as implemented in Bossa [bossa]. The procedure includes a number of reduction tests, which are referred to by their acronym. If not further specified, a test in the algorithm refers to calling it once for each node/edge in the graph.

Acronym	Reduction test
NTD1	Non-Terminal of Degree 1
NTD2	Non-Terminal of Degree 2
TD1	Terminal of Degree 1
NSV	Nearest Special Vertex (also known as Terminal Distance test)
SDE	Special Distance with Equality
SDExp	SDE with Expansion

Table 1: Applied reduction tests.

4 Exact Solution Approach

The implemented branch-and-cut procedure is based on the algorithm proposed by Koch and Martin [9]. In this paper we will only cover the differences between our and their implementation. For a complete description the reader is referred to the original paper.

Figure 1: Instance G107

Figure 2: Instance G203

Figure 3: Instance G309

Algorithm	1: Prep	processing	Proced	lure, cf.	[bossa, 13]	
-----------	---------	------------	--------	-----------	-------------	--

```
Data: A weighted graph G = (V, E, c) with terminals T \subseteq V.

Result: A reduced instance.

1 repeat

2 | NSV

3 until no further reductions possible

4 SDE

5 repeat

6 | NTD1, NTD2, TD1, NSV, SDE

7 until no further reductions possible

8 repeat

9 | NTD1, NTD2, TD1, SDE, NSV, SDExp

10 until no further reductions possible
```

Koch and Martin's branch-and-cut procedure is based on the well-known directed cut formulation [16], which they extended through so-called flow-balance inequalities (see below). These inequalities were originally considered by Duin [6] and may improve the LP relaxation in some cases. In our approach we use a similar formulation with the exception that we incorporate additional variables for Steiner nodes to facilitate node-oriented branching, which is generally more effective than branching on arc variables [4].

We refer to this *ILP model* as extended directed cut formulation (EDCF). To apply a directed formulation to an undirected problem instance, the original graph G = (V, E, c) has to be transformed into an equivalent directed version $G_D = (V, A, c)$. The arc set A contains two antiparallel arcs for all edges in E and each arc is assigned the same weight as its corresponding edge.

For each arc $(i, j) \in A$, an arc variable x_{ij} denotes membership of the corresponding arc to the Steiner tree $(x_{ij} = 1)$ or not $(x_{ij} = 0)$. Similarly, additional node variables y_i for $i \in (V \setminus T)$ denote if i is spanned by the Steiner tree $(y_i = 1)$ or not $(y_i = 0)$. An arbitrary terminal is chosen as root node r. For brevity, we use the following notations: Given a set $W \subset V$, we define $\delta^+(W) = \{(i, j) \in A \mid i \in W \land j \in V \setminus W\}$ as the set of all arcs with tail inside W and the head in its complement. Conversely, $\delta^-(W)$ denotes the set of arcs pointing into W from its complement set. For short, if W contains only a single element v, we write $\delta^+(\{v\})$ as $\delta^+(v)$ and $\delta^-(\{v\})$ as $\delta^-(v)$, respectively.

(EDCF) min
$$\begin{cases} \sum_{(ij)\in A} c_{ij} \cdot x_{ij} \mid (x,y) \in \{0,1\}^{|A|+|V|-|T|} \\ x(\delta^{-}(i)) = 1, \forall i \in T \setminus \{r\}, \quad x(\delta^{-}(i)) = y_i, \forall i \in V \setminus T \end{cases}$$
(1)

$$(f_{ij}) = (f_{ij}) = (f_{ij})$$

$$x(\delta^{-}(W)) \ge 1, \forall W \subset V, r \notin W, \ W \cap T \neq \emptyset \Big\}$$
(2)

The objective function minimizes the weight of the selected arcs. Degree constraints (1) ensure that each terminal except the root and all Steiner nodes that are part of the solution have indegree exactly one. Constraints (2) are directed cut constraints that ensure that there is a directed path between the root and any other terminal node.

The following inequalities are additionally used to initialize the branch-and-cut procedure:

$$x(\delta^+(i)) \ge y_i \qquad \qquad \forall i \in V \backslash T \tag{3}$$

$$x_{ij} + x_{ji} \le y_i \qquad \qquad \forall (i,j) \in A, i \in V \backslash T \tag{4}$$

Constraints (3) ensure that Steiner nodes that are part of the solution have at least one outgoing arc (they were referred to as "flow-balance" constraints in the literature). Constraints (4) express that each arc in the solution tree can only be oriented in one way. We also add root inand out-degree constraints: $x(\delta^+(r)) \ge 1$ and $x(\delta^-(r)) = 0$ (notice that one can alternatively remove root-incoming arcs from the input graph).

The size of the formulation is exponential due to the directed cut constraints (2). Such a formulation can be solved efficiently through the application of the well-known *cutting-plane method*. For description of the general approach the reader is referred to Grötschel, Monma, and Stoer [7]. The cutting-plane method requires a separation method, which decides which inequalities are added to the LP. We implement the separation method in the same manner as in Koch and Martin [9]. The *push-relabel maximum flow* algorithm [3] is applied, which runs in $O(|V|^2 \cdot \sqrt{|E|})$. Nested cuts, back cuts and creep-flow (facilitates the separation of maximum cardinality cuts) are used by default to improve the number and strength of separated inequalities per call. In their approach Koch and Martin restrict themselves to the use of creep-flow, because experiments suggested that nested and back cuts do not provide significant additional improvements when already using creep-fow and flow-balance inequalities. We chose to include nested and back cuts anyway, since for several of the proposed instances a performance improvement could be achieved. This may be attributable to the fact that without nested and back cuts, the solution of the LP relaxation does not change much in each cutting-plane iteration.

Further differences between our and the implementation of Koch and Martin are in the creation of fesible solutions and in the initialization of the cutting plane procedure. To further increase the branch-and-cut procedure's performance, an initial set of directed cut inequalities is computed heuristically through Wong's *dual ascent* algorithm [16]. This method is very effective for decreasing runtime, since less cutting-plane iterations are generally necessary to find the optimal solution [1, 11]. Dual ascent also calculates a feasible solution which is used to initialize the upper bounds. During the branch-and-cut procedure feasible solutions are additionally computed using a *primal heuristic*. We apply the improved implementation of the well-known shortest path heuristic [14] as proposed by Aragão and Werneck [2], which achieves a much better average-case runtime than the classic implementation. The heuristic is called after each cutting-plane iteration (instead of every five iterations like in Koch and Martin [9]), since the running time for a single separation iteration can be quite high for large instances. The heuristic is applied to the original undirected graph with adapted edge weights c'_{ij} , which are computed from the current LP solution (\tilde{x}, \tilde{y}) as follows:

$$c'_{ij} = c_{ij} \cdot (1 - \max(\tilde{x}_{ij}, \tilde{x}_{ji})) \qquad \forall \{i, j\} \in E$$

5 Results

In this section we first analyze the influence of the described preprocessing procedures on the proposed benchmark sets. Afterwards, computational results of the branch-and-cut procedure as described in Section 4 are given. For the latter we compare the performance of solving instances after simple and advanced preprocessing. The branch-and-cut procedure was implemented in C++ using ILOG CPLEX and Concert Technology 12.5. The code was compiled using gcc 4.8.1 with the -04 flag (full optimization). All algorithms were executed on a Sun Grid Engine cluster with 14 Intel Xeon E5540 2.53 GHz with 24 GB RAM and 2 Intel Xeon E5649 2.53 GHz with 60 GB RAM. All given runtimes were measured as real CPU runtime (walltime).

Since in most instances the edge weights range from very small to quite large numbers, CPLEX was configured to solve instances to a gap of 0% (default is 0.01%). Additionally the preprocessing reduction (CPX_PARAM_REDUCE) switch was set to primal only, the generation of general purpose cuts was deactivated by setting the CPX_PARAM_EACHCUTLIM parameter to 0. CPX_PARAM_DIVETYPE was set to probing, as CPLEX documentation indicated faster results for integer problems. Variable selection (CPX_PARAM_VARSEL) was set to strong branching, and branching priorities were set to prefer node variables (y_i). The CPLEX time limit was set to 86 400 seconds (24 hours). All other CPLEX parameters were left at their respective defaults.

5.1 Preprocessing

Tables 2 and 3 list the preprocessing results on the set of GEO and I instances, respectively. Each entry contains the number of edges, nodes and terminals before and after preprocessing. Additionally, we also show the percentage of remaining edges compared to the original instances after each preprocessing step (denoted by R[%]). Recall that, in contrast to I instances, the simple preprocessing had no effect on GEO instances, and therefore only the advanced preprocessing was applied to them. We notice that the advanced preprocessing applied to the group GEO removes 60 to 80% of all edges. In case of I instances, the advanced preprocessing was applied after the graphs were already reduced by the simple preprocessing. We note that the simple preprocessing procedure already manages to eliminate at least ~30% of all edges for each instance of group I. The application of advanced preprocessing manages to remove

another ~30% of all edges. Regarding the running time, we report it only for the advanced preprocessing – it can be found in Tables 4 and 5. The runtime of simple preprocessing was insignificant in comparison and was thus not documented. A cumulative chart of the advanced preprocessing runtimes is depicted in Figure 4. The time axis is drawn in a logarithmic scale. The line marks the last instance that finished preprocessing within 24 hours. We note that the advanced preprocessing of the larger instances took quite long, e.g. instance I024 finished preprocessing after 5.8 days).

Figure 5 plots the distribution of both terminal percentage and the ratio between nodes and edges before and after advanced preprocessing. The structure plot of the original instances was omitted, since the changes introduced by simple preprocessing are minimal. On the contrary, after advanced preprocessing the distribution indicates that most instances have become more sparse than before. For the GEO instances the step of simple preprocessing was skipped there for, no data was available. In case of advanced preprocessing, a clear divergence for the GEO instances from the I instances can be seen.

		original		a	dvanced j	preproc	essing	ş
ID	V	E	T	V	E	T	R [%]	time [s]
G101	67 966	82 485	100	10 7 34	16345	96	20	13
G102	111 707	160504	2052	27 896	43 925	2003	27	1003
G103	135 543	201 803	3033	36 270	57 370	2930	28	2580
G104	158212	240022	3914	44 251	70029	3776	29	4307
G105	79244	101 189	550	14 586	22450	525	22	72
G106	204621	318 136	5556	62 618	100067	5373	31	7401
G107	85 568	114113	938	15 536	23858	893	21	359
G201	44624	56 205	190	8286	12617	188	22	17
G202	62174	87 562	1015	14 028	21610	985	25	933
G203	88 728	133625	2041	25 651	40610	1999	30	1784
G204	50 002	65 203	386	9939	15249	376	23	30
G205	120 866	187 312	3224	37 398	59 323	3146	32	3458
G206	60 446	82 940	803	13 688	21197	789	26	87
G207	42 481	52552	97	7565	11521	98	22	11
G301	80 736	98 750	191	13 291	20261	181	21	24
G302	117 756	165 153	1879	24 951	38 647	1797	23	2668
G303	147 718	214176	2992	37 085	57711	2915	27	2793
G304	86 413	108872	419	15 213	23 329	403	21	162
G305	172687	255825	3902	47 016	73861	3809	29	4011
G307	235 686	366 093	6313	71 184	113616	6107	31	21691
G308	78 834	95 732	88	13 298	20351	86	21	32
G309	97 928	128 632	902	18 704	28851	868	22	287

Table 2: Results of the preprocessing procedure for the GEO instances.

		original		sim	ple prepro	ocessi	ng	advanced preprocessing				
ID	V	E	T	V	E	T	R [%]	V	E	T	R [%]	time [s]
I001	46 051	64 083	1184	30 1 90	47 748	1184	75	14675	22 055	941	34	5851
1002	86 009	115 002	1665	49 920	77 871	1665	68	23 800	35 758	1282	31	165 874
I003	79177	109 757	3222	44 482	73 419	3222	67	16 270	23 919	2336	22	197 038
I004	9128	12 409	570	5556	8552	570	69	867	1238	263	10	183
I005	16914	22 958	1017	10 284	15 980	1017	70	1677	2430	491	11	484
I006	48 804	70254	2202	31754	52 875	2202	75	13 339	19 532	1842	28	49 796
1007	23 332	32772	737	15 122	24371	737	74	6873	10 299	599	31	2979
I008	25 130	35 244	871	15714	25 567	871	73	6522	9629	708	27	2885
1009	52316	71 775	1262	33 188	52 007	1262	72	14977	22 435	1053	31	29 516
I010	65 533	83 865	943	29 905	47 457	943	57	13 0 4 1	19 545	782	23	3113
I011	45 510	62 188	1428	25 195	41 298	1428	66	9298	13 685	1202	22	2491
I012	32 326	40 562	503	12355	19 962	503	49	3500	5214	387	13	186
I013	30754	41 753	891	18 242	28 976	891	69	7147	10 608	670	25	5512
I014	36 097	44 609	475	12715	20 632	475	46	3577	5311	364	12	35
I015	92 217	124 613	2493	48 833	79 987	2493	64	20 573	30 541	2119	25	59 274
I016	143 463	187 841	4391	72 038	115 055	4391	61	27 214	39 824	3434	21	472 546
T017	25 393	34 679	478	15 095	24 091	478	69	7571	11 571	386	33	484
T018	52.889	73 439	1898	31 121	51 113	1898	70	12 258	18 014	1549	25	31.068
T019	58 078	74 770	866	25 946	41 645	866	70 56	11 693	17 624	732	24	1133
T020	68 626	83 380	594	21 808	34 921	594	42	6405	9564	508	11	485
T021	45 4 5 9	55 846	392	16.013	25 269	392	45	5195	7861	295	14	103
T021	31 703	41 466	437	16 224	25 691	437	43 62	8869	13 551	356	33	1100
T022	33 382	46 156	582	22 805	35 307	582	02 76	13 724	20.863	403	45	1628
T023	113 054	154 736	3001	68 464	108 732	3001	70	32357	48 250	2511	31	503 528
1024 T025	50 126	65 383	945	23 4 1 2	37 952	945	70 58	10.055	14 961	833	23	1328
1020	70/187	111 878	2224	47 420	70 307	2224	71	18 155	26 568	2661	24	201 744
1020 1027	160 / 38	224 004	3054	85 085	138 888	3054	62	10 133	20 J08	3/001	24	271744
T027	110745	163 543	1790	72 701	115 430	1790	71	43 690	66 461	1597	41	240 307
T020	128 122	103 343	2162	60.088	111 804	2162	65	32 070	40 627	10/6	20	62 0/8
1020	80 126	101 802	1263	33 188	53 680	1263	53	120/1	10 270	1003	10	3862
T031	110 030	146 104	2182	54 351	SS 000	2182	55 60	21 054	31/10	1832	22	11 5/0
1031	110 950	155 507	2017	56 022	01 200	2017	50	21034	21 252	2454	20	50 222
1032	33 300	133 397	636	18 555	20 730	636	57 66	8500	12 700	548	20	1511
1033	40.017	44 /07	725	22211	25 516	725	56	0128	12 / 00	606	20	1107
1034	72466	02 922	1704	20 585	50 454	1704	54	13 120	10/20	1/28	22	23 560
1035	02336	116 626	1/04	37 208	60 356	1/04	52	17 036	25 482	1920	21	6664
1030	32 330	12 651	427	13 604	22 126	1411	52	5886	8860	302	22	460
1037	20 001	42 0J1	447	19 747	20 6 20	447	52 61	7722	11 479	700	21	400
1030	10 250	24 154	907	10/4/ 9755	14 440	907	60	2710	114/0 EE22	204	23	2520
1039	10 2 3 0	24 130 104 572	347 1769	40.280	14 449	347 1769	60	10 027	00 1 E C	1501	23	90 25 412
1040	107 802	104 37 3	1102	40 309	75 207	1102	03 55	10 05/	20 130	1014	27	23 415
1041	10/ 095	137 / 90	2173	4/19/ 51 004	73 307 85 550	0171	55	22 400	25 000	1014	23	15 402
1042	903/4	21 1 (9	21/1	10 209	16 797	21/1	04 54	45923	55 800	1925	27	13 093
1043	24 400	31 108 176 500	2250	10 398	10/8/	30/	54 4	4511	0/40	333 2054	22	214 122 100
1044	130 289	1/0 526	3358	08 905	113 889	3358	05 5	31 500	46 /57	2954	26	122 199
1045	34420	41/03	421	14000	23 400	421	50 71	20.27	10 22/	3/ð	24	94 194 (94
1040	144 / 45	192 528	2224	/0843	11/209	2224	01	34 3/0	48 054	3154	25	124 094
1047	40 509	045/3	2554	28 524	46 251	2354	12	10.622	15 440	1/91	24	01 349
1048	39363	48 182	358	13 189	21 219	358	44	4920	/356	320	15	272

Table 3: Results of the preprocessing procedures for the I instances. The column R denotes the percentage of |E| remaining compared to the original instance.

		original		simple preprocessing				advanced preprocessing				
ID	V	E	T	V	E	T	R [%]	V	E	T	R [%]	time [s]
I049	79338	99 310	990	30 857	49 591	990	50	15 045	22713	821	23	8417
I050	71 355	99 944	2868	43073	71276	2868	71	17 787	26176	2232	26	253 915
I051	48764	67 543	1524	27028	45 406	1524	67	12 130	17892	1337	26	3368
I052	9257	10789	40	2363	3761	40	35	160	237	23	2	<1
I053	8604	10807	126	3224	5285	126	49	693	1023	102	9	1
I054	32 788	35 681	38	3803	6213	38	17	540	817	25	2	<1
I055	27 519	36 175	570	13332	21580	570	60	4701	6979	483	19	301
I056	7886	9265	51	1991	3176	51	34	290	439	34	5	<1
1057	68 134	90 703	1569	33 231	55 149	1569	61	13078	19 368	1346	21	14587
I058	54221	71062	1256	23527	39 628	1256	56	7877	11657	997	16	852
I059	21746	27716	363	9287	14975	363	54	2800	4157	286	15	86
1060	137 451	165 937	1242	42008	67572	1242	41	18 991	28536	1158	17	19 905
I061	70 170	95 284	1458	39 160	63 659	1458	67	20 958	31465	1337	33	32477
1062	155 326	202462	3343	66048	110 491	3343	55	23714	35 305	2812	17	9369
I063	52 176	69 576	1645	26840	43 661	1645	63	9600	14042	1291	20	55 795
I064	94 336	138745	3458	63 158	107345	3458	77	31712	46711	3182	34	332814
I065	10 200	12807	144	3898	6356	144	50	1185	1756	119	14	4
I066	59872	70249	551	15038	24 596	551	35	4551	6821	417	10	38
I067	43 552	56 846	627	20547	33 230	627	58	10318	15 588	579	27	972
I068	68 863	91 586	1553	33 1 18	55 127	1553	60	12 191	18023	1302	20	5992
I069	18 855	25 626	543	9574	16 208	543	63	3508	5156	452	20	843
I070	37 489	47602	550	15079	24608	550	52	6739	10064	511	21	874
I071	79 580	102014	1494	33 203	54427	1494	53	12772	18 886	1281	19	3843
I072	80 184	98 679	993	26948	44 194	993	45	11628	17411	851	18	721
1073	35 009	48757	1847	21653	35 171	1847	72	7510	10873	1337	22	30 970
I074	29 623	38 611	653	13 316	22033	653	57	4441	6562	548	17	123
1075	110 782	149620	2973	57 551	95 381	2973	64	23 195	34362	2498	23	20 143
1076	31738	41032	598	14023	22895	598	56	4909	7268	498	18	187
1077	31 318	44 908	1787	20856	34237	1787	76	9153	13 363	1490	30	133 537
I078	23 220	32034	835	13294	21 948	835	69	5864	8662	692	27	6513
I079	57 402	70047	565	19867	31271	565	45	7933	11807	497	17	533
I080	47 422	59412	548	18 695	29 708	548	50	7589	11256	499	19	712
I081	56718	73051	888	25081	40 739	888	56	10747	16 029	751	22	1217
I082	41 475	51 351	515	15 592	24788	515	48	5850	8693	435	17	728
I083	178810	239 522	4991	89 596	148 583	4991	62	34221	50301	4138	21	77 571
I084	96 899	126877	2319	44 934	73 727	2319	58	17 050	25201	1918	20	33 793
I085	26 002	31 896	301	9113	14491	301	45	2780	4123	243	13	80

Table 3: Results of the preprocessing procedures for the I instances. The column R denotes the percentage of |E| remaining compared to the original instance.

Figure 4: Runtimes of advanced preprocessing as depicted in Table 5.

Figure 6 indicates a correlation between the number of nodes and the number of edges in an instance. We note that preprocessing techniques (simple and advanced) increase this correlation. Figure 6(b) shows a more detailed view of this graphic for the advanced preprocessing. In this series of plots no significant difference between the I and GEO instances can be seen.

5.2 Exact Solution

Table 4 provides results for solving GEO instances without preprocessing and after advanced preprocessing. Table 5 lists the results for solving I instances after simple and advanced preprocessing. The following values are reported: The column "DAgap[%]" gives the gaps obtained by the dual ascent algorithm, which can be seen as a starting point for the ILP (recall that the ILP is initialized by the cutting planes found in the dual ascent and the the first ILP primal solution is the dual ascent feasible solution). The "gap" column lists the relative ILP optimality gaps, which specify the difference between the best found solution (shown in the "objective" column) and the best lower bound (shown in the "lower bound" column).

$$gap = \frac{objective value - lower bound}{lower bound}$$

For the instances with advanced preprocessing the gaps have been scaled to include the preprocessing offset so that they can be compared more easily with the simple preprocessed ones. Finally, the column "time[s]" shows the running time (in seconds) of the exact approach (TL stands for "the time limit reached", which was set to 24 hours per instance).

Figure 5: Scatter plot of the node-edge ratio and the terminal-node ratio. Some outlier instances from (a) are marked to illustrate the changes after preprocessing.

(a) Comparison of original and simple preprocessed I instances and GEO instances

(b) Comparison of after advanced preprocessing of GEO and I instances

Figure 6: Scatter plots showing the relation of nodes to edges.

In Figure 7 the cumulative runtimes from Table 5 are plotted. The graph reveals that the runtime improvement gained from preprocessing for branch-and-cut increases heavily with instance size. Almost all instances could be solved to optimality within one day after advanced preprocessing. If the preprocessing duration is added, the set of solved instances is still ~85% within this time limit. On the contrary, only ~65% of all instances could be solved in one day without advanced preprocessing. Table 4 reveals that only two unpreprocessed instances from the GEO group could be solved to optimality within 24 hours, and therefore, we do not show a similar chart for this group.

In general, without advanced preprocessing, a large number of instances could not be solved to optimality within one day. Figure 8 shows the relative ILP gaps (as reported by CPLEX) of the unsolved instances. Note that we did not include data for the I instances after advanced preprocessing since the unsolved instances in this case where few and the gaps small.

ID			original instan	ces		ins	tances w	ith advanced p	reprocessing	
ID	DAgap[%]	gap [%]	lower bound	objective	time [s]	DAgap[%]	gap [%]	lower bound	objective	time [s]
G101	4.8084	4.8084	3 439 226	3 604 599	TL	3.2171	0	3 492 405	3 492 405	11 887
G102	4.6487	1.1388	15 132 879	15 305 206	TL	3.9544	0.1421	15184047	15 205 628	TL
G103	4.4554	1.0418	19857612	20064484	TL	3.7510	0.0806	19 927 745	19 943 807	TL
G104	4.3463	4.3463	25 847 585	26 971 006	TL	3.6252	0.1606	26 155 589	26 197 583	TL
G105	4.1508	4.1508	12 362 889	12876053	TL	3.4270	0	12507877	12 507 877	73 229
G106	3.8048	3.8048	44 062 993	45 739 520	TL	3.2867	0.6150	44 458 569	44 731 984	TL
G107	4.7539	0.6993	7 309 295	7360406	TL	3.6783	0	7 325 530	7 325 530	7815
G201	3.8601	0.2380	3 481 975	3 490 260	TL	4.3274	0	3484028	3 484 028	1369
G202	4.2548	0.0433	6 849 281	6 852 245	TL	3.1465	0	6 849 423	6 849 423	1191
G203	4.2008	0.9392	13 107 861	13 230 972	TL	3.6252	0	13 155 210	13 155 210	23 703
G204	4.1588	0	5 313 548	5 313 548	34 256	3.2254	0	5 313 548	5 313 548	1057
G205	3.8414	3.8414	24534820	25 477 296	TL	3.1937	0.3579	24792524	24 881 257	TL
G206	4.2856	0.3279	9 166 968	9 197 029	TL	3.8149	0	9 175 622	9 175 622	2296
G207	3.0872	0	2265834	2265834	50 754	1.9700	0	2 265 834	2 265 834	1028
G301	4.4834	4.4834	4 736 298	4 948 643	TL	3.9353	0	4797441	4 797 441	13 252
G302	4.7381	1.1628	13243377	13 397 374	TL	3.4634	0	13 300 990	13 300 990	31 291
G303	3.7310	3.7310	27 645 432	28 676 881	TL	3.2469	0.0027	27 941 035	27 941 801	TL
G304	4.0303	4.0303	6 629 770	6 896 969	TL	3.7322	0	6721180	6 721 180	30 326
G305	3.6847	3.6847	40 198 331	41 679 517	TL	3.1814	0.0777	40615001	40 646 576	TL
G307	3.8089	3.8089	50 652 541	52 581 831	TL	3.2236	0.5967	51 117 755	51 422 797	TL
G308	4.3545	4.3545	4634667	4 836 484	TL	4.2217	0	4699474	4 699 474	55 315
G309	3.6466	3.6466	11143170	11549514	TL	3.4066	0	11256303	11 256 303	36 578

Table 4: Results of the branch-and-cut procedure for the GEO instances.

Figure 7: Runtimes of I Instances as depicted in Table 5.

Figure 8: ILP gaps before and after preprocessing for GEO and I instances as depicted in Tables 4 and 5 (time limit of 24 hrs)

ID	i	instances with simple preprocessing						instances with advanced preprocessing					
	DAgap[%]	gap [%]	lower bound	objective	time [s]	DAgap[%]	gap [%]	lower bound	objective	time [s]			
I001	0.1654	0	253 921 201	253 921 201	8474	0.0593	0	253 921 201	253 921 201	909			
1002	0.1993	0.1993	399 673 678	400 470 203	TL	0.0643	0	399 809 303	399 809 303	6885			
1003	0.3985	0.0038	788 767 152	788 796 834	TL	0.0484	0	788774494	788 774 494	3295			
1004	0.5017	0	279 512 692	279 512 692	125	0.0980	0	279 512 692	279 512 692	2			
1005	0.4606	0	390 876 350	390 876 350	577	0.1839	0	390 876 350	390 876 350	6			
I006	0.1228	0	504 526 035	504 526 035	59 133	0.0534	0	504 526 035	504 526 035	1739			
1007	0.1627	0	177 909 660	177 909 660	1830	0.0552	0	177 909 660	177 909 660	217			
1008	0.1748	0	201 788 202	201 788 202	2411	0.0484	0	201 788 202	201 788 202	218			
1009	0.2069	0	275 558 727	275 558 727	46 354	0.0953	0	275 558 727	275 558 727	480			
I010	0.1965	0	207 889 674	207 889 674	64 207	0.0787	0	207 889 674	207 889 674	501			
I011	0.1876	0	317 589 880	317 589 880	4837	0.0655	0	317 589 880	317 589 880	377			
I012	0.3891	0	118 893 243	118 893 243	547	0.0968	0	118 893 243	118 893 243	14			
I013	0.1600	0	193 190 339	193 190 339	7758	0.0560	0	193 190 339	193 190 339	153			
I014	0.3561	0	105 173 465	105 173 465	454	0.0917	0	105 173 465	105 173 465	6			
I015	0.2404	0.0195	592 199 698	592 315 122	TL	0.0925	0	592 240 832	592 240 832	6383			
I016	0.2017	0.0174	1 110 829 727	1 111 023 215	TL	0.0786	0	1 110 914 623	1 110 914 623	25 647			
I017	0.2099	0	109 739 695	109 739 695	703	0.0677	0	109 739 695	109 739 695	53			
I018	0.1639	0	463 887 832	463 887 832	28 352	0.0548	0	463 887 832	463 887 832	923			
I019	0.3357	0.0137	217 631 791	217 661 665	TL	0.1095	0	217 647 693	217 647 693	1026			
I020	0.3100	0	146 515 460	146 515 460	5022	0.1027	0	146 515 460	146 515 460	66			
I021	0.2945	0	106470644	106470644	4109	0.1036	0	106470644	106 470 644	47			
I022	0.2251	0	106 799 980	106 799 980	2270	0.0687	0	106 799 980	106 799 980	233			
I023	0.2519	0	131044872	131044872	5578	0.0565	0	131 044 872	131 044 872	677			
I024	0.1690	0.0090	758 461 284	758 529 425	TL	0.0676	0	758 483 415	758 483 415	44124			
I025	0.4678	0	232 790 758	232 790 758	48 985	0.2180	0	232 790 758	232 790 758	1289			
I026	0.2070	0.0084	927 995 642	928 073 794	TL	0.0565	0	928 032 223	928 032 223	3955			
I027	0.2471	0.0256	976 718 597	976 968 933	TL	0.0938	0.0000	976 811 902	976 814 293	TL			
I028	0.2450	0.2450	383 904 288	384844706	TL	0.0963	0.0273	374 103 584	384 324 703	TL			
I029	0.3059	0.0173	492 167 713	492 252 699	TL	0.1247	0	492 193 565	492 193 565	10 876			
1030	0.4950	0	321 646 787	321 646 787	63 989	0.1585	0	321 646 787	321 646 787	467			
I031	0.3144	0.0234	578 237 328	578 372 425	TL	0.1719	0	578 284 709	578 284 709	2759			
I032	0.1316	0.0107	773064822	773147670	TL	0.0561	0	773 096 651	773 096 651	2493			
I033	0.1711	0	134461857	134461857	1735	0.0780	0	134461857	134 461 857	118			
I034	0.3018	0	165 115 148	165 115 148	80 365	0.0894	0	165 115 148	165 115 148	410			
1035	0.1813	0	414440370	414440370	34056	0.0704	0	414440370	414 440 370	767			
1036	0.3184	0.0211	375 236 129	375 315 190	TL	0.1328	0	375260864	375 260 864	2696			
1037	0.4207	0	105720727	105 720 727	5427	0.1292	0	105 720 727	105 720 727	59			
I038	0.2291	0	255 767 543	255 767 543	8669	0.0746	0	255 767 543	255 767 543	584			
I039	0.2572	0	85 566 290	85 566 290	331	0.0726	0	85 566 290	85 566 290	30			
1040	0.3016	0.0263	431 468 812	431 582 451	TL	0.0925	0	431 498 867	431 498 867	2874			
I041	0.3686	0.0291	301 879 284	301 967 000	TL	0.1350	0	301 914 840	301 914 840	10 892			
1042	0.2338	0.0267	532 079 428	532 221 597	TL	0.0985	0	532 131 412	532 131 412	10 532			
1043	0.2555	0	95 722 094	95 722 094	1002	0.1358	0	95 722 094	95 722 094	35			
1044	0.2372	0.0143	804 487 839	804 602 796	TL	0.1013	0	804 532 332	804 532 332	24 578			
1045	0.2889	0	105 944 062	105 944 062	4047	0.1175	0	105 944 062	105 944 062	73			
1046	0.2455	0.0293	925 400 944	925 672 015	TL	0.1415	0	925 470 052	925 470 052	52 0 20			
1047	0.1963	0.0007	695 159 075	695 164 265	TL	0.0597	0	695 163 406	695 163 406	1524			
1048	0.2728	0	91 509 264	91 509 264	4547	0.1486	0	91 509 264	91 509 264	44			
1049	0.3290	0.0398	294 771 429	294 888 690	TL	0.1327	0	294 811 505	294 811 505	3302			
1050	0.1689	0.0174	792 559 129	792 696 807	TL	0.0661	0	792 599 114	792 599 114	19726			
1051	0.1463	0	357 230 839	357 230 839	75 456	0.0582	0	357 230 839	357 230 839	1420			
1052	0.1188	0	13 309 487	13 309 487	1	0.0197	0	13 309 487	13 309 487	<1			
1053	0.1544	0	30 854 904	30 854 904	10	0.0863	0	30 854 904	30 854 904	<1			
1054	1.1682	0	15 841 596	15 841 596	94	0.6760	0	15 841 596	15 841 596	<1			
1055	0.1552	0	144 164 924	144 164 924	912	0.0498	0	144 164 924	144 164 924	44			
1026	0.2039	U	14 171 206	14 171 206	1	0.0442	0	14 171 206	14 171 206	<1			

Table 5: Results of the branch-and-cut procedure, for the I instances

	i	nstances	with simple p	reprocessing	instances with advanced preprocessing					
ID	DAgap[%]	gap [%]	lower bound	objective	time [s]	DAgap[%]	gap [%]	lower bound	objective	time [s]
1057	0.2014	0	412 746 415	412746415	78 499	0.0646	0	412 746 415	412 746 415	764
I058	0.2829	0	305 024 188	305 024 188	6638	0.0788	0	305 024 188	305 024 188	191
I059	0.1968	0	107617854	107617854	130	0.0397	0	107617854	107 617 854	6
I060	0.4419	0.0044	337 277 249	337 292 055	TL	0.3193	0	337 290 460	337 290 460	3441
I061	0.1894	0.0269	363 005 993	363 103 538	TL	0.0831	0	363 042 722	363 042 722	14454
I062	0.3359	0.0226	792 875 218	793 054 349	TL	0.1416	0	792 941 137	792 941 137	6898
1063	0.2691	0	459 801 704	459 801 704	57 789	0.1252	0	459 801 704	459 801 704	1008
I064	0.1575	0.0205	863 036 549	863 213 284	TL	0.0701	0.0000	863 103 171	863 104 019	TL
I065	0.2297	0	32 965 718	32 965 718	55	0.0712	0	32 965 718	32 965 718	4
I066	0.2602	0	174219813	174219813	2153	0.1377	0	174219813	174219813	45
I067	0.2214	0	175540750	175540750	57 694	0.1142	0	175540750	175 540 750	462
I068	0.2179	0	420730046	420 730 046	16 961	0.0751	0	420 730 046	420 730 046	597
I069	0.1882	0	135 161 583	135 161 583	866	0.0487	0	135 161 583	135 161 583	38
1070	0.2802	0	136 700 139	136 700 139	5639	0.1017	0	136 700 139	136 700 139	135
I071	0.1891	0	382 539 099	382 539 099	38 045	0.0741	0	382 539 099	382 539 099	533
1072	0.2683	0	289 019 226	289019226	82 039	0.0909	0	289 019 226	289 019 226	528
1073	0.2313	0	663 004 987	663 004 987	17 297	0.0486	0	663 004 987	663 004 987	359
I074	0.3288	0	165 573 383	165 573 383	725	0.1134	0	165 573 383	165 573 383	29
I075	0.2546	0.0186	815 360 214	815 511 714	TL	0.0814	0	815 404 026	815 404 026	5622
I076	0.3925	0	166 249 692	166 249 692	1091	0.0801	0	166 249 692	166 249 692	40
1077	0.1719	0	472 503 150	472 503 150	21 580	0.1124	0	472 503 150	472 503 150	740
I078	0.1544	0	185 525 490	185 525 490	1049	0.0562	0	185 525 490	185 525 490	129
I079	0.4900	0.0025	150 506 371	150 510 132	TL	0.2471	0	150 506 933	150 506 933	1514
I080	0.4339	0	164 299 652	164 299 652	53 423	0.1349	0	164 299 652	164 299 652	213
I081	0.3561	0	247 527 679	247 527 679	35 565	0.1270	0	247 527 679	247 527 679	674
I082	0.3735	0	147 407 632	147 407 632	4923	0.1481	0	147 407 632	147 407 632	73
I083	0.2787	0.0291	1405421745	1405830098	TL	0.1217	0	1 405 593 856	1 405 593 856	27 622
I084	0.3082	0.0157	627 148 556	627 246 982	TL	0.1065	0	627 187 559	627 187 559	2876
I085	0.2585	0	80 628 079	80 628 079	199	0.1053	0	80 628 079	80 628 079	10

Table 5: Results of the branch-and-cut procedure, for the I instances

6 Conclusion

We presented two new sets of STP benchmark instances that were created from real-world fiber optic network design problems. Our experiments indicate that the application of preprocessing requires a large amount of time on such huge graphs. However, results suggest that the effort pays off and the application of preprocessing prior to exact methods is recommendable. It remains an open question how other solution approaches would perform on this instance set. We expect that the results presented in this work can further be improved by applying more sophisticated and effective methods as e.g. the framework by Polzin [11] and Daneshmand [5].

References

- [1] ARAGÃO, M. P. DE, UCHOA, E. AND WERNECK, R. F. F. Dual Heuristics on the Exact Solution of Large Steiner Problems. *Electronic Notes in Discrete Mathematics* 7 (2001), 150–153. DOI: 10.1016/S1571-0653(04) 00247-1.
- [2] ARAGÃO, M. P. DE AND WERNECK, R. F. F. On the implementation of MST-based heuristics for the Steiner problem in graphs. In: ALENEX. Ed. by Mount, D. M. and Stein, C. Vol. 2409. Lecture Notes in Computer Science. Springer, 2002, 1–15. ISBN: 3-540-43977-3. DOI: 10.1007/3-540-45643-0_1.
- [3] CHERKASSKY, B. V. AND GOLDBERG, A. V. On implementing push-relabel method for the maximum flow problem. Lecture Notes in Computer Science 920 (1995). Ed. by Balas, E. and Clausen, J., 157–171. DOI: 10.1007/3-540-59408-6_49.
- [4] CRONHOLM, W., AJILI, F. AND PANAGIOTIDI, S. On the minimal Steiner tree subproblem and its application in branch-and-price. In: *Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems*. Springer, 2005, 125–139.
- [5] DANESHMAND, S. V. Algorithmic Approaches to the Steiner Problem in Networks. PhD thesis. University of Mannheim, 2003.
- [6] DUIN, C. W. Steiner's problem in graphs. PhD thesis. University of Amsterdam, 1993.
- [7] GRÖTSCHEL, M., MONMA, C. L. AND STOER, M. Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. *Operations Research* 40, 2 (1992), 309-330. DOI: 10.1287/opre.40.2.309.
- [8] KARP, R. M. Reducibility among combinatorial problems. In: Complexity of Computer Computations. Ed. by Miller, R. E. and Thatcher, J. W. Plenum Press, New York, 1972, 85–103.
- KOCH, T. AND MARTIN, A. Solving Steiner tree problems in graphs to optimality. *Networks* 32, 3 (1998), 207–232. DOI: 10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.C0;2-0.
- [10] KOCH, T., MARTIN, A. AND VOB, S. SteinLib: An updated library on Steiner tree problems in graphs. Tech. rep. 00-37. Takustr.7, 14195 Berlin: ZIB, 2000.
- [11] POLZIN, T. Algorithms for the Steiner problem in networks. PhD thesis. Saarland University, 2004.
- [12] PROSSEGGER, M. Generation of a Weighted Network Graph based-on Hybrid Spatial Data. In: Proceedings of The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services, GEOProcessing, Nice, France. ISBN: 978-1-61208-251-6. 2013, 120–124.
- [13] RIBEIRO, C. C., UCHOA, E. AND WERNECK, R. F. F. A hybrid GRASP with perturbations for the Steiner problem in graphs. *INFORMS Journal on Computing* 14, 3 (2002), 228–246. DOI: 10.1287/ijoc.14.3.228.116.
- [14] TAKAHASHI, H. AND MATSUYAMA, A. An approximate solution for the Steiner problem in graphs. Math. Japonica 24, 6 (1980), 573–577.
- [15] UCHOA, E., ARAGÃO, M. P. DE AND RIBEIRO, C. C. Preprocessing Steiner problems from VLSI layout. Networks 40, 1 (2002), 38–50. DOI: 10.1002/net.10035.
- [16] WONG, R. T. A dual ascent approach for Steiner tree problems on a directed graph. *Mathematical Programming* 28, 3 (1984), 271–287. ISSN: 0025-5610. DOI: 10.1007/BF02612335.