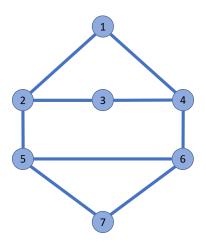
On Integer and Bilevel Formulations for the *k*-Vertex Cut Problem

Ivana Ljubić•,

joint work with Fabio Furini°, Enrico Malaguti* and Paolo Paronuzzi*

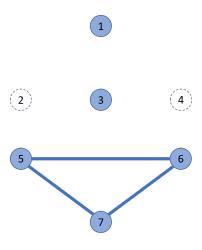
*DEI "Guglielmo Marconi", University of Bologna

°Paris Dauphine University


*ESSEC Business School, Paris

INOC 2019, June 12-14 2019, Avignon

Problem setting and motivation


Problem setting

A **k-vertex cut** is a subset of vertices whose removal disconnects the graph in at least k (not-empty) components.

Problem setting

Example of a 3-vertex cut:

The k-Vertex Cut Problem

Definition

Given an undirected graph G = (V, E) with vertex weights w_v , $v \in V$, and a integer $k \ge 2$, find a subset of vertices of **minimum weight** whose removal disconnects G in at least k (not-empty) components.

Motivation

- Family of Critical Node Detection Problems (M. Lalou, M. A. Tahraoui, and H. Kheddouci. The critical node detection problem in networks: A survey. Computer Science Review, 2018);
- Analysis of networks (D. Kempe, J. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for social networks. Automata, Languages and Programming, 2005.);
- Decomposition method for linear equation systems.

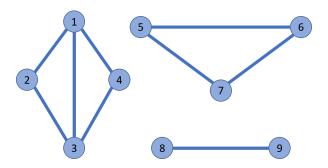
Compact formulation

We associate a binary variable y_v^i to all vertices $v \in V$ and for all integers $i \in K$, such that:

$$y_v^i = \begin{cases} 1 & \text{if vertex } v \text{ belongs to component } i \\ 0 & \text{otherwise} \end{cases}$$
 $i \in K, v \in V.$

Compact Model

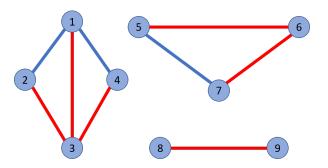
Compact ILP formulation for k-Vertex-Cut Problem:


$$\begin{split} \min \sum_{v \in V} w_v - \sum_{i \in K} \sum_{v \in V} w_v y_v^i \\ \sum_{i \in K} y_v^i &\leq 1 & v \in V, \\ y_u^i + y_v^j &\leq 1 & i \neq j \in K, uv \in E, \\ \sum_{v \in V} y_v^i &\geq 1 & i \in K, \\ y_v^i &\in \{0,1\} & i \in K, v \in V. \end{split}$$

Drawbacks: LP-optimal solution is zero (set all $y_v^i = 1/k$), symmetries, etc.

Property

A graph G has at least k (not empty) components if and only if any cycle-free subgraph of G contains at most |V| - k edges.


Example with |V| = 9 and k = 3:

Property

A graph G has at least k (not empty) components if and only if any cycle-free subgraph of G contains at most |V| - k edges.

Example with |V| = 9 and k = 3:

The k-vertex cut problem can be seen as a Stackelberg game:

- the leader searches the smallest subset of vertices V_0 to delete:
- the follower maximizes the size of the cycle-free subgraph on the residual graph.

Property

The solution $V_0 \subset V$ of the leader is feasible if and only if the value of the **optimal follower's response** (i.e., the size of the maximum cycle-free subgraph in the remaining graph) is at most $|V| - |V_0| - k$.

The leader decisions:

$$x_v = \begin{cases} 1 & \text{if vertex } v \text{ is in the } k\text{-vertex cut} \\ 0 & \text{otherwise} \end{cases} \quad v \in V$$

For the decisions of the follower, we use additional binary variables associated with the edges of G:

$$e_{uv} = egin{cases} 1 & ext{if edge } uv ext{ is selected to be in the cycle-free subgraph} \ 0 & ext{otherwise} \end{cases} uv \in E$$

The Bilevel ILP formulation of the k-vertex cut problem reads as follows:

$$\min \sum_{v \in V} x_v$$

$$\Phi(x) \le |V| - \sum_{v \in V} x_v - k$$

$$x_v \in \{0, 1\}$$

$$v \in V.$$

- $\Phi(x)$ is the optimal solution value of the follower subproblem for a given x.
- Value Function Reformulation.
- Value function $\Phi(x)$ is neither convex, nor concave, nor connected...

How do we calculate $\Phi(x)$?

For a solution x^* of the leader, which denotes a set V_0 of interdicted vertices, the follower's subproblem is:

$$\Phi(x^*) = \max \sum_{uv \in E} e_{uv}$$

$$e(S) \leq |S| - 1 \qquad S \subseteq V, S \neq \emptyset,$$

$$e_{uv} \leq 1 - x_u^* \qquad uv \in E,$$

$$e_{uv} \leq 1 - x_v^* \qquad uv \in E,$$

$$e_{uv} \in \{0, 1\} \qquad uv \in E.$$

We can prove that the follower's subproblem is equivalently restated as:

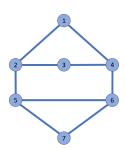
$$egin{aligned} \Phi(x^*) = & \max \sum_{uv \in E} z_{uv} (1-x_u^*-x_v^*) \ & z(S) \leq |S|-1 \qquad S \subseteq V, S
eq \emptyset \ & z_{uv} \in \{0,1\} \qquad \qquad uv \in E. \end{aligned}$$

• Convexification of the value function $\Phi(x)$

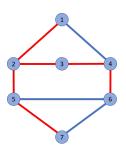
Since the space of feasible solutions of the redefined follower subproblem does not depend on the leader anymore, the non-linear constraint from the BILP formulation:

$$\Phi(x) \le |V| - \sum_{v \in V} x_v - k$$

can now be replaced by the following exponential family of inequalities:

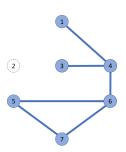

$$\sum_{uv \in E(T)} (1 - x_u - x_v) \le |V| - \sum_{v \in V} x_v - k \qquad T \in \mathcal{T}$$

where \mathcal{T} denote the set of all cycle-free subgraphs of G.

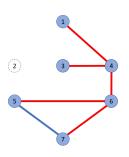

The following single-level formulation, denoted as *Natural Formulation*, is a valid model for the *k*-vertex cut problem:

$$egin{aligned} \min \sum_{v \in V} w_v x_v \ & \sum_{v \in V} [\deg_{\mathcal{T}}(v) - 1] x_v \geq k - |V| + |E(\mathcal{T})| & \mathcal{T} \in \mathcal{T}, \ & x_v \in \{0, 1\} & v \in V. \end{aligned}$$

$$\sum_{v\in V}[\deg_T(v)-1]x_v\geq k-|V|+|E(T)|$$



$$\sum_{v \in V} [\deg_{\mathcal{T}}(v) - 1] x_v \ge k - |V| + |E(\mathcal{T})|$$


$$2x_2 + x_4 + x_5 \ge 2$$

$$\sum_{v \in V} [\deg_{\mathcal{T}}(v) - 1] x_v \ge k - |V| + |E(\mathcal{T})|$$

$$2x_2 + x_4 + x_5 \ge 2$$

$$\sum_{v\in V}[\deg_{\mathcal{T}}(v)-1]x_v\geq k-|V|+|E(\mathcal{T})|$$

$$2x_2 + x_4 + x_5 \ge 2$$
$$-x_2 + 2x_4 + 2x_6 \ge 1$$

$$\sum_{v \in V} [\deg_{\mathcal{T}}(v) - 1] x_v \ge k - |V| + |E(\mathcal{T})|$$

$$2x_2 + x_4 + x_5 \ge 2$$
$$-x_2 + 2x_4 + 2x_6 > 1$$

Separation procedure

Let x^* be the current solution. We define edge-weights as

$$w_{uv}^* = 1 - x_u^* - x_v^*, \quad uv \in E$$

and search for the maximum-weighted cycle-free subgraph in G. Let W^* denote the weight of the obtained subgraph; if $W^* > |V| - k - \sum_{v \in V} x_v^*$, we have detected a violated inequality.

The separation procedure can be performed in polynomial time by running an adaptation of Kruskal's algorithm for minimum-spanning trees.

A Hybrid Approach

Representative Variables

Observation

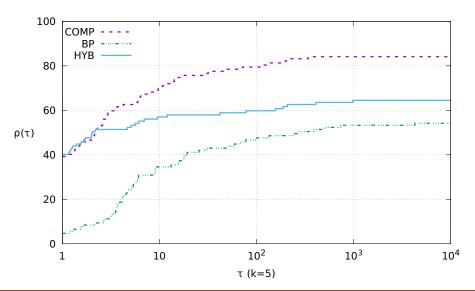
- A graph G admits a k-vertex cut if and only if $\alpha(G) \ge k$.
- To each component we associate a vertex from the stable set a representative.

We introduce a set of binary variable to select which vertices are representative:

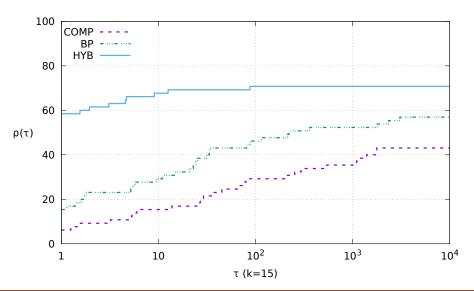
$$z_{v} = egin{cases} 1 & ext{if vertex } v ext{ is the representative of a component} \ 0 & ext{otherwise} \end{cases}$$
 $v \in V$

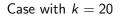
Representative Constraints

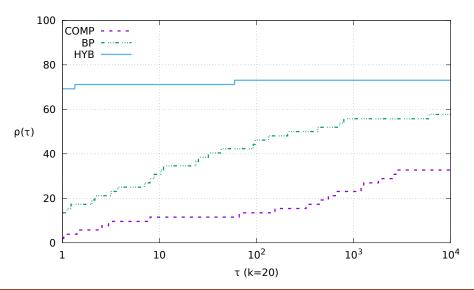
$$\begin{split} \sum_{v \in V} z_v &= k \\ z_u + z_v &\leq 1 & uv \in E, \\ x_u + z_u &\leq 1 & u \in V, \\ z_u + \sum_{v \in N(u)} z_v &\leq 1 + (\deg(u) - 1) x_u & u \in V. \end{split}$$


We considered two sets of graph instances from the 2nd DIMACS and 10th DIMACS challenges.

For all the instances we tested four different values of k (5, 10, 15, 20).


Compared Methods (time limit of 1 hour):


- COMP: Compact model (solved by CPLEX 12.7.1);
- **BP:** State-of-the-art Branch-and-Price solving an *Extended* formulation (*Cornaz*, *D.*, *Furini*, *F.*, *Lacroix*, *M.*, *Malaguti*, *E.*, *Mahjoub*, *A. R.*, & *Martin*, *S.* (2017). The Vertex k-cut Problem, Discrete Optimization, 2018.);
- **HYB**: Hybrid approach



Conclusions and future work

- Our hybrid formulation outperforms both CPLEX and B&P;
- It is a thin formulation, with O(n) variables
- We partially exploit a **hereditary property** on G (if a subset of edges is cycle-free, any subset of it is cycle-free too) to convexify $\Phi(x)$
- This allows us to derive an ILP formulation in the natural space (was open for some time)
- Where else can we exploit similar ideas?

Conclusions and future work

Thank you for your attention.