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Deterministic Steiner Tree Problem (STP)

Deterministic STP
• Given: undirected graph G = (V ,E ), positive edge costs ce , set of terminals
T ⊂ V , T 6= ∅.

• Objective:
min{c(E0) : E0 ⊂ E ,E0 spans R}.

Decision problem NP-complete. Well studied, many applications, recent DIMACS
Challenge (non-trivial graphs with 100 000’s of nodes solved to optimality).
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WHY DO WE STUDY STEINER
TREES UNDER UNCERTAINTY?
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Steiner Tree Problem (STP) Under Uncertainty

In practice, two sources of uncertainty:

• Who are the terminals? No precise knowledge of future customer demands.

• What are the edge installation costs? Future edge costs may be more
expensive and prices are highly volatile (“wait and see” can be costly).

One possible approach: Stochastic Optimization

Estimate possible outcomes and derive scenarios:

• Each scenario k assumes terminals T k ⊂ V are given and edge costs ck are
specified.

Decision Process: Two Stages

• First Stage: (“now”, Monday): buy cheap/profitable edges now. Difficulty:
we only know possible outcomes and their probabilities.

• Second Stage: (“future”, Tuesday, one scenario is realized): additional
edges are purchased to make the solution feasible (recourse action).
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SSTP: Formal Problem Definition

SSTP

• Given: Undirected graph G = (V ,E ), root r ∈ V , positive edge costs c0
e ,

e ∈ E . Set of scenarios K , s.t. k ∈ K :

I probability pk > 0,
I edge costs cke , e ∈ E ,
I set of terminals T k ⊂ V , r ∈ T k .

• Objective: Find E 0 ⊂ E (purchased in the first-stage) and E k ⊂ E
(purchased in the second-stage, if scenario k is realized), for all k ∈ K such
that expected solution cost is minimized, i.e.:

min
∑
e∈E 0

c0
e +

∑
k∈K

pk
∑
e∈E k

cke

s.t. E 0 ∪ E k spans T k , ∀k ∈ K
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WHAT IS KNOWN ABOUT SSTP
SO FAR?
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Previous Work

• introduced by Gupta et al. [2007a] (approximation and complexity results)

• approximation algorithms [Gupta and Pál, 2005, Gupta et al., 2004, 2007b,
Swamy and Shmoys, 2006]

I In general, SSTP is NP-hard to approximate within a constant factor.
Constant approximation possible only for special cases.

• fixed-parameter tractability [Kurz et al., 2013]

• heuristics [Hokama et al., 2014] (genetic algorithm, DIMACS Challenge
2014)

• exact two-stage branch-and-cut based on Benders decomposition:
I stochastic STP [Bomze et al., 2010],
I stochastic survivable network design [Ljubić et al., 2017],
I PhD thesis Bernd Zey (upcoming 2017).
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Our Contribution

• we introduce a new ILP formulation for the SSTP
I strongest among existing formulations

• we design a solution framework based on this formulation
I exploits the decomposability of the formulation in various ways

Figure: Algorithmic framework.

• we present a computational study comparing our approach with
I state-of-the-art exact approach from [Bomze et al., 2010, Ljubić et al., 2017]

(Benders decomposition based on two-stage branch-and-cut)
I genetic algorithm from [Hokama et al., 2014]

• presented method significantly outperforms these approaches
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STEP 1:
A STRONGER FORMULATION
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Two Semi-Directed Models for SSTP [Bomze et al., 2010, Zey, 2016,
Ljubić et al., 2017]

It is impossible to orient the first-
stage solution, so we derive semi-
directed formulations.
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Hierarchy of Formulations

(SDCFB
3 )

(SDCFB
2 )

(SDF) (SDC3) (SDC2) (SDC∗2)

(SDC1)

(UF) (UC)

Figure: Directed arcs indicate that the target formulation is stronger than the source
formulation. Blue boxes: the formulation has been introduced by us, all the others are
from Bomze et al. [2010], Zey [2016]

.

Flow-Balance constraints (FB):

• strengthening: ensure, that only terminals can be leaf-nodes

• added to (SDC2) from Bomze et al. [2010], Zey [2016] → (SDCFB
2 )

• added to our (SDC3) → (SDCFB
3 )
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(SDC3): A Strong Formulation for SSTP

• idea: Steiner arborscence rooted at r for each k ∈ K , using arcs bought in
first and second stage

I binary w k
ij = 1, iff arc (i , j) is selected in the first stage for scenario k

I binary zkij = 1, iff arc (i , j) is selected in the second stage for scenario k
I binary xe = 1, iff edge e is selected in the first stage

• Wk : set of directed Steiner cuts for scenario k

min
∑
e∈E

c0
e xe +

∑
k∈K

pk
∑

e={i,j}∈E

cke (zkij + zkji )

s.t. w k(δ−(W )) + zk(δ−(W )) ≥ 1 ∀W ∈ Wk , ∀k ∈ K (SDC3:1)

w k
ij + w k

ji ≤ xe ∀e = {i , j} ∈ E , ∀k ∈ K
(SDC3:2)

(x, z,w) ∈ {0, 1}|E |+2|A||K | (SDC3:3)
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The Framework

Advantages of (SDC3): It decomposes nicely, and gives the strongest bounds
with (SDCFB

3 ).

How does it work?

1 Dual ascent: greedy heuristic that changes dual multipliers λ while
monotonically increasing LB. Gives also an UB.

2 Lagrangian: takes UB and final λ from DA to initialize the subgradient
method. Improves UB and LB. Applies reduction techniques. Generates a
collection of useful dual multipliers λ.

3 Benders: takes UB and optimality cuts associated to Langrangian λ found
during the subgradient procedure.

OBSERVE: Steps 1 and 2 give valid LB and UB and are purely
combinatorial (no MIP solver needed!) Step 3 is a branch-and-cut (CPLEX).
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STEP 2:
DUAL ASCENT
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Dual Ascent

• let β and λ be the dual multipliers of (SDC3:1) (connectivity) and (SDC3:2)
(linking)

(SDCD
3 ) max

∑
k∈K

∑
W∈Wk

βk
W∑

k∈K

λke ≤ c0
e ∀e ∈ E

(SDCD
3 :1)

β(Wk
ij ) ≤ pkcke ∀(i , j) ∈ A,∀k ∈ K , e = {i , j}

(SDCD
3 :2)

β(Wk
ij )− λke ≤ 0 ∀(i , j) ∈ A,∀k ∈ K , e = {i , j}

(SDCD
3 :3)

(βk ,λk) ∈ R|W
k |+|E |

≥0 ∀k ∈ K

• dual ascent works similar to dual ascent for STP Wong [1984]
I start from initial solution β̄ = 0
I each iteration: increase one dual variable βk

W = 0 while preserving feasibility
I The worst-case time complexity: O(

∑
k∈K
|A|min{|A|, |T k ||V |}).
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STEP 3:
LAGRANGIAN HEURISTIC
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Lagrangian Relaxation

• relax constraints (SDC3:2) using Lagrangian dual multipliers λ ≥ 0
• we obtain the relaxation

L(λ) := min
{∑

e∈E

c0
e xe +

∑
k∈K

pk
∑

e={i,j}∈E

cke (zkij + zkji )+

∑
k∈K

∑
e={i,j}∈E

λke (wk
ij + wk

ji − xe) : (SDC3:1), (SDC3:3)
}

• define Lagrangian cost as c̃e := c0
e −

∑
k∈K λ

k
e , e ∈ E

• problem decomposes into |K |+ 1 independent subproblems
I one in x

L0(λ) := min
{∑

e∈E

c̃exe : x ∈ {0, 1}|E |
}

I and one in zk ,wk for k ∈ K

Lk(λ) := min
{ ∑

e={i,j}∈E

[
pkcke (zkij + zkji ) + λk

e (w k
ij + w k

ji )
]

:

(SDC3:1), (zk ,wk) ∈ {0, 1}2|A|
}
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Lagrangian Relaxation

• the Lagrangian dual problem is

(SDCLD
3 ) max

λ≥0

{
L0(λ) +

∑
k∈K

Lk(λ)
}

• L0(λ) can be computed by inspection

• Lk(λ): solving an instance of the Steiner arborescence problem (SAP)

Theorem

v(LP-SDCFB
3 ) ≤ v(SDCLD

3 ) = v(SDC3)

• we solve (SDCLD
3 ) using a subgradient scheme

• dual variables at the end of the dual ascent are used to initialize λ

• subproblems Lk(λ) are solved heuristically
I using a dual ascent for SAP together with a primal heuristic

• two different heuristics to calculate high-quality feasible solutions

• we designed reduction tests to fix nodes and edges
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STEP 4:
BENDERS DECOMPOSITION
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Benders Decomposition

• in the spirit of the two-stage B&C approach introduced in Bomze et al.
[2010] for (SDC2).

• Benders master problem is stated as follows

(SDCB
3 ) min

∑
e∈E

c0
e xe +

∑
k∈K

pkθk

s.t. θk ≥ Φk(x) ∀k ∈ K (SDCB
3 :1)

x ∈ {0, 1}|E |,θ ∈ R|K |≥0

• variables z and w associated to the second stage projected out

• θk ≥ 0: second-stage cost for each scenario

• for each k ∈ K and first-stage solution x̄, the recourse function Φk(x̄) gives
the corresponding second-stage cost

• dynamically separated fractional and integral Benders optimality cuts are
used in order to underestimate the value of Φk(x̄)
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Benders Decomposition

• Benders subproblem is another Steiner arborescence problem

• Benders cuts

θk ≥
∑

W∈Wk

β̄k
W −

∑
e∈E

λ̄ke xe ∀k ∈ K (SDCB
3 :FRAC)

where λ̄k and β̄k are (optimal) dual multipliers of the LP-relaxation of the
Benders subproblem.

• Lagrangian optimality cuts:
I initialize the master problem using optimality cuts derived from high-quality

Lagrangian multipliers (λ̄k = λk and β̄k = 1
pk
βk)

• Integer optimality cuts
I Φk(x̄) is an STP, solved using the exact solver by Fischetti et al. [2017]
I let E 0

S = {e ∈ E : x̄e = 1}, optimality cuts are defined as

θk ≥ Φk(x̄)−
∑

e∈E\E0
S

cke xe ∀k ∈ K (SDCB
3 :INT)
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COMPUTATIONAL RESULTS
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Implementation Details and Benchmark Instances

• implemented in C++

• Benders decomposition: CPLEX 12.7 is used as a ILP solver

• single-threaded on an Intel Xeon CPU E5-2670v2 (2.5 GHz)

• time limit of one hour and a memory limit of 6 GB

• instances from the [SSTPLib] (used in the 11th DIMACS Implementation
Challenge); denoted as SMALL

• also generated new large-scale benchmark instances from real-world STP
instances [Leitner et al., 2014]; denoted as LARGE

Table: Basic properties of our benchmark instances.

|V | |E | |K |
dataset inst[#] min avg max min avg max min avg max

K100 154 22 31 45 64 115 191 5 272 1000
P100 70 66 77 91 163 194 237 5 272 1000
LIN01-10 140 53 190 321 80 318 540 5 272 1000
WRP 196 10 194 311 149 363 613 5 272 1000

VIENNA 40 1991 5756 9574 3176 9347 16208 5 21 50
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Effects of the Dual Ascent Initialization
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Figure: Optimality gap charts for SMALL and LARGE instances with dual ascent
initialization of the subgradient algorithm (DL) and without (L).
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Effects of the Benders Decomposition

• gap at the end of the root node
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Figure: Optimality gap charts at the end of the root node for SMALL and LARGE with
(DLRB3) and without (DLR) Benders decomposition applied as a refinement procedure.
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Comparison with the State-of-the-Art

• re-implemented Benders approach of Bomze et al. [2010], denoted as B2
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Figure: Optimality gap charts comparing DLRB3 and B2.
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Comparison with the State-of-the-Art
• H: heuristic of Hokama et al. [2014] are denoted

I done in C++; obtained on an Intel Xeon CPU E3-1230 V2, (3.30GHz)

• Pg : primal gap, tb: time to best solution

Table: Results on datasets K100 (all solved to optimality by DLRB3 and B2, columns
Pg [%] are thus omitted).

t[s] Pg [%] tb[s]
|K | DLRB3 B2 H DLRB3 B2 H

5 1 1 2.31 0 1 1
10 1 1 0.86 1 1 1
20 2 2 0.68 1 1 2
50 3 3 0.81 2 2 5
75 4 5 0.55 2 4 8

100 5 5 0.58 3 4 11
150 9 8 0.57 6 6 16
200 13 12 0.52 8 9 23
250 15 16 0.55 6 11 28
300 19 17 0.88 9 14 30
400 27 22 0.72 15 18 40
500 32 28 0.60 18 18 57
750 44 47 0.66 26 36 93

1000 68 61 0.82 32 35 121
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Further Reading

References:

• M. Leitner, I. Ljubić, M. Luipersbeck, M. Sinnl, Decomposition methods
for the two-stage stochastic Steiner tree problem, technical report, 2017

http://homepage.univie.ac.at/ivana.ljubic/research/

publications/da-TR.pdf

Our additional work on dual ascent for Steiner trees:

• M. Leitner, I. Ljubić, M. Luipersbeck, M. Sinnl, A dual-ascent-based
branch-and-bound framework for the prize-collecting Steiner tree and
related problems, INFORMS Journal on Computing, 2017, to appear

• code available at https://github.com/mluipersbeck/dapcstp
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