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Abstract A new algorithmic approach for solving the stochastic Steiner tree problem based on three
procedures for computing lower bounds (dual ascent, Lagrangian relaxation, Benders decomposition) is
introduced. Our method is derived from a new Integer Linear Programming formulation, which is shown
to be strongest among all known formulations. The resulting method, which relies on an interplay of the
dual information retrieved from the respective dual procedures, computes upper and lower bounds and
combines them with several rules for fixing variables in order to decrease the size of problem instances.

The effectiveness of our method is compared in an extensive computational study with the state-
of-the-art exact approach, which employs a Benders decomposition based on two-stage branch-and-cut,
and a genetic algorithm introduced during the DIMACS Implementation Challenge on Steiner trees. Our
results indicate that the presented method significantly outperforms existing ones, both on benchmark
instances from literature, as well as on large-scale telecommunication networks.

Keywords Lagrangian relaxation, Benders decompostion, stochastic optimization, Steiner trees

1 Introduction

The two-stage stochastic Steiner tree problem with complete recourse (SSTP) is a generalization of the
well-studied (deterministic) Steiner tree problem (STP), with applications in telecommunication network
design under uncertainty. The problem has been introduced by Gupta et al. [14] and subsequently,
algorithms based on fixed-parameter tractability [23], heuristics [19], and exact methods [2,27] have been
proposed. Moreover, approximation algorithms for several variants of the problem have been studied [15,
16,17,36].

Recall that in the classical (deterministic) STP on graphs, one is given an edge-weighted graph
with a set of terminals that need to be connected at minimum cost (see, e.g., [20]). As illustrated in
[27], in the SSTP (and in stochastic network design problems, in general), both the set of terminals
and the edge-weights can be subject to uncertainty. In that case, network planners want to establish
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ESSEC Business School of Paris, Cergy-Pontoise, France
E-mail: ivana.ljubic@essec.edu

M. Luipersbeck
University of Vienna, Faculty of Business, Economics and Statistics, Department of Statistics and Operations Research,
Vienna, Austria E-mail: martin.luipersbeck@univie.ac.at

M. Sinnl
University of Vienna, Faculty of Business, Economics and Statistics, Department of Statistics and Operations Research,
Vienna, Austria and
INOCS, INRIA Lille-Nord Europe, Villeneuve d’Ascq, France
E-mail: markus.sinnl@inria.fr



profitable connections now (in the first stage) while taking possible uncertain outcomes into account.
Usually, the set of uncertain outcomes is approximated through a set of possible scenarios, with a known
probability of occurrence. In the second stage, the actual scenario is revealed (i.e., the set of terminals and
edge-weights become known), and additional connections can be purchased (through so-called recourse
actions) to create a feasible Steiner tree. The objective is to minimize the expected cost of the solution,
i.e., the sum of the first-stage cost plus the expected cost of the second stage.

The SSTP is formally defined as follows.

Definition 1 Stochastic Steiner tree problem (SSTP). Let G = (V,E) be an undirected graph
with root node r ∈ V , first-stage edge costs c0 : E 7→ R≥0 and scenario set K. Each scenario k ∈ K
has probability pk ∈ (0, 1],

∑
k∈K p

k = 1, as well as second-stage edge costs ck : E 7→ R≥0 and terminals

T k ⊆ V , r ∈ T k. The objective is to select first-stage edges E0
S ⊆ E and second-stage edges EkS ⊆ E for

each k ∈ K such that the subgraph induced by E0
S ∪EkS , G[E0

S ∪EkS ], connects T k and the expected cost∑
e∈E0

S

c0e +
∑
k∈K

pk
∑
e∈Ek

S

cke

is minimized.

Our contribution For the deterministic STP a wealth of theoretical results [6,11,20,29] and empirically
successful computational techniques are known [8,10,31]. However, as noted in [2,27], the generalization
of results from the STP to the SSTP is not straightforward. In this article we first provide a new
Integer Linear Programming (ILP) formulation for the SSTP and show that it is the strongest (in terms
of the quality of linear relaxation bounds) among existing formulations. Moreover, we show how the
new formulation allows the simple derivation of procedures for computing lower bounds. Overall, we
study three such procedures for the SSTP, namely dual ascent, Lagrangian relaxation, and Benders
decomposition. The dual information provided by each of these methods is exploited in a common
algorithmic framework. This results in a powerful primal-dual method in which the calculation of upper
and lower bounds is combined with variable fixing for decreasing the size of the search space.

The effectiveness of our method is demonstrated in an extensive computational study on benchmark
instances from the literature, and on large-scale telecommunication networks. We compare our method
with the state-of-the-art exact approach from [2,27], which employs a Benders decomposition based on
two-stage branch-and-cut (B&C), and a genetic algorithm from [19], introduced during the DIMACS
Implementation Challenge on Steiner trees. Our results indicate that the presented method significantly
outperforms the alternative approaches from the literature, both in terms of computing times, and the
quality of obtained solutions.

Outline In the remainder of this section, notation is introduced and related work is discussed. In Sec-
tion 2, a new ILP formulation for the SSTP is presented and its strength is compared to the previously
strongest formulation. Moreover, strengthening inequalities are analyzed. In Section 3, an algorithmic
framework is described which combines a dual ascent procedure, a Lagrangian heuristic, Benders decom-
position, and variable fixing. In Section 4, computational results are presented, while concluding remarks
are drawn in Section 5.

Notation Let GD = (V,A) denote the bidirected counterpart of G = (V,E), where A = {(i, j) : {i, j} ∈
E}. We leave the arc costs on A unchanged, i.e., for all (i, j) ∈ A and k ∈ K, we have: c0ij = c0e and

ckij = cke , where e = {i, j} ∈ E. For W ⊂ V , let δ+(W ) := {(i, j) ∈ A : i ∈ W, j ∈ V \ W} be the
outgoing arc set, δ−(W ) := {(i, j) ∈ A : i ∈ V \W, j ∈ W} the ingoing arc set, and δ(W ) := {{i, j} ∈
E : i ∈ V \W, j ∈ W} the undirected cut set. For brevity, if W = {i}, we write δ+(i), δ−(i), and δ(i),
respectively. For each k ∈ K, let Wk be the family of node sets inducing Steiner cuts with respect to
the set of terminals T k, i.e.,

Wk := {W ⊂ V : r /∈W,W ∩ T k 6= ∅}.
For a given k ∈ K and (i, j) ∈ A, let Wk

ij be the subset of node sets from Wk for which the induced
Steiner cut includes arc (i, j), i.e.,

Wk
ij := {W ∈ Wk : (i, j) ∈ δ−(W )}.

Given a variable vector v and an index set I, let v(I) =
∑
i∈I vi. Let c = (c0, . . . , ck) and T =

(T 1, . . . , T k). For a given scenario k ∈ K, a node i ∈ V \ T k is referred to as Steiner node.
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1.1 Related works

The SSTP is NP-hard, as the STP appears as special case for |K| = 1 and the first-stage cost set to
infinity. In the literature, variants and special cases have been addressed by approximation algorithms [15,
16,17,36].

An algorithm based on fixed-parameter tractability has been introduced in [23], and a genetic algo-
rithm in [19]. The only exact method we are aware of is a two-stage B&C approach based on Benders
decomposition, which has been originally proposed in [2]. Very recently, the study of a generalization of
the SSTP, namely the stochastic survivable network design problem, along with a more sophisticated
implementation, has been given in [27].

In a recent comparison of ILP formulations [41], it is shown that the strongest known formulations
for the SSTP are semi-directed, i.e., they are defined on G in the first and GD in the second stage. These
formulations exploit the property that in an optimal solution G[E0

S ∪ EkS ] contains a Steiner tree for
each k ∈ K, which has a one-to-one correspondence to a Steiner arborescence rooted at r on GD. As a
consequence, given an (optimal) first-stage solution E0

S , an optimal second-stage solution for each k ∈ K
can be identified by solving a Steiner arborescence problem (SAP) in a modified graph. It is well known
that directed formulations based on the STP’s representation as SAP are stronger than their undirected
counterparts [11], and the same relation holds between semi-directed and undirected formulations for the
SSTP [41]. Unfortunately, as shown in [41] the SSTP cannot be formulated in a purely directed setting.

Consider the following two semi-directed cut formulations, (SDC1) and (SDC2), studied in [2,27,41].

(SDC1) min
∑
e∈E

c0exe +
∑
k∈K

pk
∑

e={i,j}∈E

cke(zkij + zkji)

s.t. x(δ(W )) + zk(δ−(W )) ≥ 1 ∀W ∈ Wk,∀k ∈ K (SDC1:1)

(x, z) ∈ {0, 1}|E|+|A||K| (SDC1:2)

(SDC2) min
∑
e∈E

c0exe +
∑
k∈K

pk
∑

e={i,j}∈E

cke(ykij + ykji − xe)

s.t. yk(δ−(W )) ≥ 1 ∀W ∈ Wk,∀k ∈ K (SDC2:1)

ykij + ykji ≥ xe ∀e = {i, j} ∈ E,∀k ∈ K (SDC2:2)

(x,y) ∈{0, 1}|E|+|A||K| (SDC2:3)

In both formulations, binary variables xe indicate if edge e is chosen as part of the first stage (xe = 1) or
not (xe = 0). A subtle difference exists between the meaning of binary second-stage variables z in (SDC1)
and y in (SDC2). In (SDC1), for each scenario k ∈ K, zkij indicates if arc (i, j) is chosen as part of the

second stage (zkij = 1) or not (zkij = 0). In (SDC2), ykij have the same interpretation for xe = 0, e = {i, j}.
Otherwise, they indicate in which direction a first-stage edge can be (potentially) used as part of the
Steiner arborescence corresponding to G[E0

S ∪ EkS ]. Linking constraints (SDC2:2) enforce this choice of
direction. By optimality, it is guaranteed that per chosen first-stage edge exactly one arc is chosen in
each scenario. Note that in an optimal solution a first-stage edge might only be used by a subset of
scenarios, but constraints (SDC2:2) imply that for every scenario an arc must be chosen (i.e., must be
oriented in the second-stage), even though the arc may not be part of the scenario’s Steiner arborescence.
In these cases the superfluous cost must be subtracted again in the objective function. Observe that the
integrality requirements on x can be relaxed, as whenever y is binary, x will automatically take on a binary
value, too. (SDC2) provides the advantage that connectivity is modeled by purely directed connectivity
cuts (SDC2:1). In the worst case (only first-stage edges are chosen), the presence of undirected variables
in (SDC1:1) has the effect that the Linear Programming (LP) relaxation of (SDC1) is equivalent to the
one of a purely undirected formulation [41].

Despite (SDC2) being strictly stronger than (SDC1) (this result has been proven in [27], see also [41]),
there is a potential shortcoming of that formulation. As already noted, due to the linking constraints (SDC2:2),
the arc set induced by yk does not form an arborescence in an optimal solution, i.e., the solution induced
by yk is a union of a Steiner arborescence connecting r with T k and a subset of oriented edges that are
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purchased in the first-stage. Therefore, the flow-balance inequalities (FB) stating that each Steiner node
cannot be a leaf in any optimal solution,

yk(δ−(i)) ≤ yk(δ+(i)) ∀i ∈ V \ T k,∀k ∈ K, (FB)

are not valid for (SDC2) without further modification. This is unfortunate, as the corresponding flow-
balance inequalities for the STP are known to strengthen the LP relaxation of its directed cut formulation
(see, e.g, [31,21]).

In the following, we develop a new ILP formulation that explicitly takes advantage of the flow-balance
constraints and whose lower bounds dominate those of all known models from the literature.

2 A new ILP formulation

Our new formulation, in which inequalities similar to (FB) hold, is derived on the basis of (SDC1).
First, copies xk of the undirected first-stage variables x are introduced together with linking constraints

x = xk for each scenario k ∈ K. Due to c0 ∈ R|E|≥0 these equations can be relaxed to inequalities, i.e.,

x ≥ xk,∀k ∈ K. As discussed during the introduction of (SDC2), in an optimal solution a first-stage
edge will only be used in at most one direction. We therefore replace undirected edge variables xk by
corresponding arc variables w ∈ {0, 1}|A||K| and impose constraints xe ≥ wkij+wkji, for all e = {i, j} ∈ E,
and all k ∈ K, instead.

Each variable wkij indicates if the Steiner arborescence of scenario k uses the first-stage edge e = {i, j}
and it also determines its orientation for the given scenario k. It follows that in an optimal solution, the
arc set induced by variables zk and wk with values equal to one forms a Steiner arborescence rooted at
r connecting all terminals from T k. Thus, we obtain a new valid ILP formulation for the SSTP, that we
denote by (SDC3):

(SDC3) min
∑
e∈E

c0exe +
∑
k∈K

pk
∑

e={i,j}∈E

cke(zkij + zkji)

s.t. wk(δ−(W )) + zk(δ−(W )) ≥ 1 ∀W ∈ Wk,∀k ∈ K (SDC3:1)

wkij + wkji ≤ xe ∀e = {i, j} ∈ E,∀k ∈ K (SDC3:2)

(x, z,w) ∈ {0, 1}|E|+2|A||K| (SDC3:3)

Observe that integrality requirements on x can be relaxed, as in an optimal solution for any binary
w and z, x will automatically take a binary value.

2.1 Comparison between (SDC2) and (SDC3)

In the following, we focus on the strength of the LP relaxation bound of (SDC3) and compare it with the
corresponding bound for the model (SDC2) presented in Section 1.1. To this end, we introduce additional
notation. Given ỹ ∈ R|A||K|, let

α̃kij :=


ỹkij

ỹkij+ỹ
k
ji

if ỹkij + ỹkji > 0,

0 otherwise.

By construction, α̃kij + α̃kji ∈ {0, 1}, for all (i, j) ∈ A, and all k ∈ K.
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Definition 2 Let ϕ and ψ denote the following mappings:

ϕ : (x̃, ỹ) ∈ R|E|+|A||K| 7→ (x̂, ŵ, ẑ) ∈ R|E|+2|A||K|

ϕ(x̃, ỹ) :


x̂e := x̃e ∀e ∈ E
ẑkij := ỹkij − α̃kij x̃e ∀(i, j) ∈ A, e = {i, j},∀k ∈ K
ŵkij := α̃kij x̃e ∀(i, j) ∈ A, e = {i, j},∀k ∈ K

ψ : (x̂, ẑ, ŵ) ∈ R|E|+2|A||K| 7→ (x̃, ỹ) ∈ R|E|+|A||K|

ψ(x̂, ẑ, ŵ) :

{
x̃e := x̂e ∀e ∈ E
ỹkij := ẑkij + ŵkij + 1

2 (x̂e − ŵkij − ŵkji) ∀(i, j) ∈ A, e = {i, j},∀k ∈ K

The value of a formulation is denoted by v(·), its LP relaxation by prepending “LP-” to its name.
Without loss of generality, we assume that any given LP solution is minimal, i.e., no variable can be
decreased such that the solution remains feasible and the objective value does not increase. Moreover,
as the upper bound constraints of an LP relaxation are redundant in a minimization setting, they are
not considered. The following result shows that the two formulations, (SDC2) and (SDC3), are equally
strong.

Theorem 1 v(LP-SDC2) = v(LP-SDC3).

Proof
v(LP-SDC3) ≤ v(LP-SDC2): Let (x̃, ỹ) be a solution to (LP-SDC2). Define (x̂, ẑ, ŵ) := ϕ(x̃, ỹ). Due to
the feasibility of (x̃, ỹ), the constructed point satisfies all bound constraints of (LP-SDC3). The choice
of α̃kij in particular guarantees that each ẑkij is non-negative. Moreover, due to constraints (SDC2:2),

ỹkij + ỹkji = 0 implies x̃e = 0, so (α̃kij + α̃kji)x̃e = x̃e. As a consequence, under mapping ϕ equations (1)-(3)
hold for each (i, j) ∈ A, e = {i, j} and k ∈ K:

ẑkij + ẑkji = ỹkij + ỹkji − x̃e (1)

ŵkij + ẑkij = ỹkij (2)

ŵkij + ŵkji = x̂e (3)

Due to (1), the objective values associated to (x̃, ỹ) by (LP-SDC2) and to (x̂, ẑ, ŵ) by (LP-SDC3) are
equal. Due to equations (2) and (3), (x̂, ẑ, ŵ) satisfies both (SDC3:1) and (SDC3:2), and is thus feasible
for (LP-SDC3).

v(LP-SDC2) ≤ v(LP-SDC3): Let (x̂, ẑ, ŵ) be a solution to (LP-SDC3). Define (x̃, ỹ) := ψ(x̂, ẑ, ŵ).
Due to the feasibility of (x̂, ẑ, ŵ), the constructed point satisfies all bound constraints of (LP-SDC2).
Under mapping ψ, equation (1) holds, and thus also in this case the objective values of both points are
equal under their respective objective function. Moreover, due to zkij + zkji ≥ 0 and (1), (SDC2:2) are
satisfied. Finally, (x̃, ỹ) satisfies (SDC2:1) since (x̂, ẑ, ŵ) satisfies (SDC3:1) and (SDC3:2):

ỹk(δ−(W )) =
∑

(i,j)∈δ−(W ),
e={i,j}

(ŵkij + ẑkij)

︸ ︷︷ ︸
≥1

+
∑

(i,j)∈δ−(W ),
e={i,j}

1

2
(x̂e − ŵkij − ŵkji)

︸ ︷︷ ︸
≥0

≥ 1 ∀W ∈ Wk,∀k ∈ K

Thus (x̃, ỹ) is feasible for (LP-SDC2).

The latter result may appear discouraging, since it shows that the two basic models, (SDC2) and
(SDC3), provide the same quality of LP relaxation bounds, whereas the second one comes at the cost of
introducing additional |A||K| variables w. However, the following section demonstrates that the model
(SDC3) has significant advantages over (SDC2), due to the modeling of strong flow-balance constraints.
Moreover, in Sections 3.1–3.3, we show how to construct alternative methods for computing lower bounds
and for applying variable fixing. These methods specifically exploit the property that for each scenario
k ∈ K the corresponding second-stage solution forms a Steiner arborescence in (SDC3).
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2.2 Flow-balance constraints

Formulations (SDC2) and (SDC3) can be strengthened by adding variants of the STP’s flow-balance
inequalities, (SDC2:FB) and (SDC3:FB), respectively.

yk(δ−(i)) ≤ yk(δ+(i)) + x(δ(i)) ∀i ∈ V \ T k,∀k ∈ K (SDC2:FB)

wk(δ−(i)) + zk(δ−(i)) ≤ wk(δ+(i)) + zk(δ+(i)) ∀i ∈ V \ T k,∀k ∈ K (SDC3:FB)

Constraints (SDC2:FB) ensure that the in-degree of a Steiner node in the second-stage is not greater
than its out-degree, unless the node is adjacent to an edge that has been purchased in the first-stage.
A stronger version of these constraints can be imposed for model (SDC3) due to the fact that the
second-stage solution is now modeled as a Steiner arborescence. Constraints (SDC3:FB) ensure that
after orienting the solution in the second-stage, each node i 6∈ T k, cannot be a leaf in the second-stage,
if scenario k occurs.

In the following, we compare the strength of models (SDC2) and (SDC3) with flow-balance constraints.
Theorems 2–3 show that adding flow-balance constraints in the respective models can lead towards a
strictly stronger formulation, whereas Theorem 4 proves that the strongest LP relaxation bounds are
obtained by model (SDCFB

3 ). All theorems make use of the example shown in Figure 1. In this instance,
we are given two scenarios (K = {1, 2}), with second-stage costs computed from first-stage costs based
on a fixed inflation factor. Terminals are represented by black squares. In Figure 1, the union of terminals
over all scenarios is shown, i.e.,

⋃
k∈K T

k.

r

1 2 3 4 5

6 7 8 9 10

Fig. 1 Example. K = {1, 2}, p1 = p2 = 0.5, T 1 = {r, 6, 8}, T 2 = {r, 8, 10}, for each e ∈ E, c0e = 2 if incident to a terminal,
else c0e = 1. Second stage costs are set to c1 = 1.4c0 and c2 = 1.1c0, respectively.

Figures 2–4 show optimal LP solutions to the instance from Figure 1 for different formulations. Each
solution is displayed in three separate subfigures, one for the first stage and two for the second stage,
one for each scenario. An edge/arc is omitted if the LP value of the associated variable is 0. Otherwise,
if the LP value is 0.5 or 1, it is drawn dashed or solid, respectively. When displaying LP solutions for
(SDC3) and (SDCFB

3 ), note that for all k ∈ K, (i, j) ∈ A, either zkij = 0 or wkij = 0. Moreover, for all

e = {i, j} ∈ E, xe > 0 implies zkij = 0 for all k ∈ K. Thus for these formulations only one graph for each

scenario is shown, based on the LP values of zk + wk.

Theorem 2 v(LP-SDC2) ≤ v(LP-SDCFB
2 ) and there exist instances in which the inequality is strict.

Proof Figures 2 and 3 show optimal solutions to (LP-SDC2) and (LP-SDCFB
2 ), respectively. The former

solution violates (SDC2:FB) for k = 1, node i = 2 and k = 2, node i = 4, while all inequalities of this
type are satisfied for the latter. Moreover, v(LP-SDC2) = 8.875 < 8.95 = v(LP-SDCFB

2 ) in the example.

Theorem 3 v(LP-SDC3) ≤ v(LP-SDCFB
3 ) and there exist instances in which the inequality is strict.

Proof Figures 4 and 5 show optimal solutions to (LP-SDC3) and (LP-SDCFB
3 ), respectively. The former

solution violates (SDC3:FB) for k = 1, node i = 2 and k = 2, node i = 4, while all inequalities of this
type are satisfied for the latter. Moreover, v(LP-SDC3) = 8.875 < 9 = v(LP-SDCFB

3 ) in the example.

Theorem 4 v(LP-SDCFB
2 ) ≤ v(LP-SDCFB

3 ) and there exist instances in which the inequality is strict.

Proof Let (x̂, ẑ, ŵ) be a solution to (LP-SDCFB
3 ). Define (x̃, ỹ) := ψ(x̂, ẑ, ŵ). By Theorem 1, (x̃, ỹ) is

feasible for (LP-SDC2). It remains to show that the point satisfies (SDC2:FB). As indicated by (4)–(6),
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this is the case under mapping ψ if (x̂, ẑ, ŵ) satisfies (SDC3:FB). Thus (x̃, ỹ) is feasible for (LP-SDCFB
2 ).

ŵk(δ−(i)) + ẑk(δ−(i)) ≤ ŵk(δ+(i)) + ẑk(δ+(i)) (4)

⇐⇒ ŵk(δ−(i)) + ẑk(δ−(i)) +
1

2
(x̂e − ŵij − ŵji) ≤ ŵk(δ+(i)) + ẑk(δ+(i)) +

1

2
(x̂e − ŵij − ŵji) (5)

⇐⇒ ỹk(δ−(i)) ≤ ỹk(δ+(i)) (6)

In order to show that there exist instances in which the inequality is strict, Figures 3 and 5 depict the
optimal solutions to (LP-SDCFB

2 ) and (LP-SDCFB
3 ), respectively. One can verify that in each case, all

respective flow-balance inequalities are satisfied. Moreover, v(LP-SDCFB
2 ) = 8.95 < 9 = v(LP-SDCFB

3 ).

r

1 2 3 4 5

6 7 8 9 10

x0

r

1 2 3 4 5

6 7 8 9 10

y1

r

1 2 3 4 5

6 7 8 9 10

y2

Fig. 2 Fractional optimal LP solution to (SDC2) for the example shown in Figure 1, v(LP-SDC2) = 8.875. The solution
is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values equal to 0, drawn dashed for
0.5, and drawn solid for 1.

rr

1 2 3 4 5

6 7 8 9 10

x0

rr

1 2 3 4 5

6 7 8 9 10

y1

rr

1 2 3 4 5

6 7 8 9 10

y2

Fig. 3 Fractional optimal LP solution to (SDCFB
2 ) for the example shown in Figure 1, v(LP-SDCFB

2 ) = 8.95. The solution
is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values equal to 0, drawn dashed for
0.5, and drawn solid for 1.

r

1 2 3 4 5

6 7 8 9 10

x0

r

1 2 3 4 5

6 7 8 9 10

z1 + w1

r

1 2 3 4 5

6 7 8 9 10

z2 + w2

Fig. 4 Fractional optimal LP solution to (SDC3) for the example shown in Figure 1, v(LP-SDC3) = 8.875. The solution
is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values equal to 0, drawn dashed for
0.5, and drawn solid for 1.
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r

1 2 3 4 5

6 7 8 9 10

x0

r

1 2 3 4 5

6 7 8 9 10

z1 + w1

r

1 2 3 4 5

6 7 8 9 10

z2 + w2

Fig. 5 Integral optimal LP solution to (SDCFB
3 ) for the example shown in Figure 1, v(LP-SDCFB

3 ) = 9. The solution is
drawn separately according to stage and scenario. Arcs/edges are omitted for LP values equal to 0 and are drawn solid for
1.

In summary, one can observe that in case no first-stage edges are chosen, (SDC2:FB) have the same
effect as in the SAP. This behavior can be compared to (SDC1), which may be as strong as (SDC2) in
the same scenario. In contrast, (SDC3:FB) can potentially improve the LP bound even if all edges are
chosen in the first-stage.

2.3 Hierarchy of formulations

The theoretical results of this section are summarized in Figure 6, in which we augment the recent findings
from [41] with our new results. For the sake of brevity, some of the formulations from this hierarchy are
not shown in this article. These are: (UF) and (UC) that denote the undirected flow and cut formulations,
and (SDF) which denotes the semi-directed flow-formulation. (SDC∗2) denotes a variant of (SDC2) with
aggregated coefficients in the objective function. The models have been studied in [41], where the lower
three levels of the shown hierarchy (except for the model (SDC3)) have been proven. In this article we
introduce the formulation (SDC3) and show that it is equally strong as the other strongest models from
[41]. Our new models (SDCFB

2 ) and (SDCFB
3 ) are the formulations (SDC2) and (SDC3) augmented with

flow-balance inequalities (SDC2:FB) and (SDC3:FB), respectively. We show that (SDCFB
2 ) and (SDCFB

3 )
further improve the LP relaxations bounds, with the strongest ones being obtained with the (SDCFB

3 )
model.

(SDCFB
3 )

(SDCFB
2 )

(SDF) (SDC3) (SDC2) (SDC∗2)

(SDC1)

(UF) (UC)

Fig. 6 Hierarchy of formulations for the SSTP. Surrounding boxes and dashed lines indicate equivalence, while directed
arcs indicate that the target formulation is stronger than the source formulation.

3 Algorithmic framework

Given the results of Section 2, we decided to build our algorithmic framework based on formulation
(SDCFB

3 ). It is well-known that the size of two-stage stochastic optimization models becomes prohibitive
for a large number of scenarios. Hence, in order to develop a computationally competitive approach,
naturally one has to rely on a decomposition framework.
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Two types of decomposition techniques are commonly employed for this task: Benders decomposition
(see, e.g., [1,5]) and Lagrangian relaxation (see, e.g., [9,39]). These two approaches can be seen as dual
to each other [32,33], as the former decomposes the problem by stage, while the latter decomposes by
scenario. Naturally, both of them can be used as stand-alone procedures for solving a large-scale stochas-
tic optimization problem. However, using both Lagrangian and Benders decomposition in a combined
framework opens up further possibilities to obtain the benefits of both procedures, as the problem at
hand can be attacked from multiple angles, in order to exploit different types of problem-structures [38].

Thus our framework combines these two decomposition approaches. Furthermore, due to similarities
between the SSTP and its deterministic variant, a third option for computing lower bounds appears
promising: a dual ascent procedure, which constructs an initial dual solution in a greedy scheme (see
[28,30,40]). For the STP and its variants, such procedures are known empirically to obtain high quality
bounds, which in some cases are even tight enough to solve the corresponding problem to optimality in a
branch-and-bound (B&B) procedure [26,28,31]. In the framework proposed in this article, we chose the
configuration of these three techniques as shown in Figure 7.

Fig. 7 Algorithmic framework.

The central component of our approach is a Lagrangian-based heuristic that computes valid lower and
upper bounds and performs variable fixing based on the dual information. This Lagrangian procedure
is warm-started by a dual ascent heuristic (specifically derived for the SSTP). Finally, an additional
refinement of the computed lower bound is performed by a Benders decomposition framework (actually,
a two-stage B&C similar to the one proposed in [2,27]).

Note that the chosen sequence of execution is a natural one, as the methods are arranged based
on the computational complexity (see Sections 3.1–3.3 for details). The communication between each
distinct phase is performed by passing on primal and dual solutions. Most importantly, the dual solution
computed by the dual ascent procedure is used as an initial set of Lagrange dual multipliers to warm-
start a subgradient algorithm. Similarly, a subset of all computed Lagrangian dual solutions is used to
generate valid cutting planes, which are then used to initialize the two-stage B&C procedure.

Moreover, although (SDCFB
3 ) offers tighter bounds than (SDC3), we found it beneficial to only make

use of the flow-balance constraints in the final refinement phase. The main reason is that in our imple-
mentation, up to this point we focus mainly on the use of fast dual heuristics, in which the inclusion of
such constraints is a non-trivial aspect. Even in state-of-the-art algorithmics frameworks for the STP,
their inclusion is usually avoided [28,31] for simplicity reasons. Furthermore, the tighter bounds provided
by (SDCFB

3 ) are mainly useful when attempting to solve the instance to optimality, i.e., in the refinement
phase.

In the remainder of this section we provide the algorithmic and implementational details of this new
method.

3.1 Lagrangian relaxation and reduced cost fixing

The Lagrangian relaxation of model (SDC3) is obtained by relaxing constraints (SDC3:2) and adding
them to the objective function as penalty terms. The associated set of non-negative Lagrangian dual
multipliers is denoted by λ. For each value of λ, the resulting Lagrangian relaxation yields a valid lower
bound for (SDC3), and is given as follows.

L(λ) := min
{∑
e∈E

c0exe +
∑
k∈K

pk
∑

e={i,j}∈E

cke(zkij + zkji) +
∑
k∈K

∑
e={i,j}∈E

λke(wkij + wkji − xe) : (SDC3:1), (SDC3:3)
}

9



After rearranging the terms in the objective function and moreover defining the Lagrangian cost as
c̃e := c0e −

∑
k∈K λ

k
e , e ∈ E, we obtain the following, simplified representation.

L(λ) := min
{∑
e∈E

c̃exe +
∑
k∈K

∑
e={i,j}∈E

[
pkcke(zkij + zkji) + λke(wkij + wkji)

]
: (SDC3:1), (SDC3:3)

}
The problem decomposes into |K| + 1 independent subproblems, one in x and the others in zk,wk for
k ∈ K.

L0(λ) := min
{∑
e∈E

c̃exe : x ∈ {0, 1}|E|
}

Lk(λ) := min
{∑
e={i,j}∈E

[
pkcke(zkij + zkji) + λke(wkij + wkji)

]
: (SDC3:1), (zk,wk) ∈ {0, 1}2|A|

}
∀k ∈ K

The Lagrangian dual problem, which corresponds to finding the best lower bound, is then stated as:

(SDCLD3 ) max
λ≥0

{
L0(λ) +

∑
k∈K

Lk(λ)
}
.

It is easy to see that L0(λ) can be computed by inspection. For Lk(λ), there exists an optimal solution
in which either zkij or wkij (or none of them) will be chosen for each k ∈ K – and this choice depends

solely on the property if pkcke < λke holds or not. Thus the computation of Lk(λ) is equivalent to solving
an instance of the SAP, i.e., given terminals T k and arc costs min{pkcke , λke} for all (i, j) ∈ A, e = {i, j},
the objective is to find a minimum-cost arborescence rooted at r which contains a directed path from r
to each terminal t ∈ T k. Furthermore, in a minimal optimal solution to Lk(λ), flow-balance inequalities
will be satisfied.

The following result provides a further justification for choosing the model (SDC3) in our approach, as
the Lagrangian dual bounds obtained from (SDC3) can be even stronger than the LP relaxation bounds
from (SDCFB

3 ).

Theorem 5 v(LP-SDCFB
3 ) ≤ v(SDCLD3 ) = v(SDC3).

Proof The LP relaxation of Lk(λ) augmented with flow-balance inequalities (SDC3:FB) does not have
the integrality property, and therefore the optimal solution to (SDCLD3 ) may yield a stronger bound.
Moreover, the Lagrangian dual bound of (SDC3) is equal to the optimal solution value, which follows
from the fact that no integrality conditions are imposed on variables x that only appear in the relaxed
linking constraints (SDC3:2) (see Theorem 8.2 from [4] for further details).

3.1.1 Variable fixing based on reduced costs

Variable fixing based on reduced costs is an indispensable tool in many modern primal-dual solution
frameworks [26,31]. In this section we address conditions under which first- and second-stage variables
of (SDC3) can be eliminated, given valid Lagrangian dual multipliers λ̄.

In addition to the Lagrangian cost c̃0 associated to the first-stage variables x, for each k ∈ K we
consider the LP relaxation of the Lagrangian subproblem for computing Lk(λ̄) in order to obtain reduced
cost also for the second-stage variables zk and wk. The associated LP dual is given as follows. We use
Lk(λ̄) to denote the corresponding lower bound.

Lk(λ̄) := max
∑

W∈Wk

βkW

s.t. β(Wk
ij) ≤ min{pkcke , λ̄ke} ∀(i, j) ∈ A, e = {i, j}

βk ∈ R|W
k|

≥0

Variables βk are non-negative dual multipliers associated to each connectivity cut constraint (SDC3:1).

Given a feasible solution β̄
k
, the reduced cost of the packing constraints in the dual are

c̃kij := min{pkcke , λ̄ke} − β̄(Wk
ij) ∀(i, j) ∈ A, e = {i, j}.

10



Let the vector of Lagrangian cost and LP reduced cost be c̃ := (c̃0, . . . , c̃k). The value of L0(λ̄)
together with a lower bound Lk(λ̄) to Lk(λ̄) for each k ∈ K yields a valid lower bound to the original
problem, i.e., LB := L(λ̄) = L0(λ̄) +

∑
k∈K L

k(λ̄). Based on Lagrangian duality (see, e.g., [39]), this
information in combination with a valid upper bound UB allows variables to be fixed either to one or
zero. For example, if LB + c̃kij > UB , both zkij and wkij can be fixed to zero, as the cost of an optimal
solution in which either of these two variables are set to one will exceed UB . Conversely, observe that
fixing variables to one is only possible for first-stage variables xe for each e ∈ E, as second-stage reduced
cost are non-negative. However, as will be shown, fixing variables to zero is usually a more promising
strategy anyway, as in this case various structural properties of an optimal solution can be exploited.

We begin with a simple observation based on the packing constraints in the stated dual. If a second-
stage variable zkij or wkij is set to one for an arc (i, j) ∈ A, e = {i, j}, depending if either zkij or wkij is fixed,

additional reduced cost are incurred due to the min-expression. If zkij is fixed to one, then in addition

to c̃kij , max{0, pkcke − λ̄ke} is paid. Conversely, if wkij is fixed to one, then max{0, λ̄ke − pkcke} is paid in
addition.

Additional incurred reduced cost can be inferred based on well-known arguments for the SAP. By
minimality, each arc (i, j) ∈ A part of an optimal arborescence corresponding to Lk(λ̄) must lie on a
directed path from r to some terminal t ∈ T k. Based on this property, it can be shown that setting an
arc variable to one will incur the reduced cost of all arcs on this path [6,31]. As the optimal arborescence
is not known, a frequently applied approach is to obtain an efficiently computable underestimation of
these costs [6,10,26,31]. Let d̃kij denote the cost of a shortest path from i to j on GD computed based

on c̃k. The incurred reduced cost can be bounded from below by computing the shortest path based on
reduced cost from r to i and from j to the closest terminal t ∈ T k, i.e.,

D̃k
ij := d̃kri + c̃kij + min

t∈Tk
d̃kjt ∀k ∈ K.

Note that similar reasoning applies if a first-stage edge variable xe, e ∈ E is set to one, as at least one
second-stage arc corresponding to this first-stage edge must be part of an optimal solution. However, the
direction of this arc is usually not known (either w`ij = 1 or w`ji = 1 for some ` ∈ K). In this case the
cheaper direction is a valid underestimation of the reduced cost of this path.

D̃k
e := min{D̃k

ij , D̃
k
ji}+ max{0, λ̄ke − pkcke}, ∀k ∈ K, e = {i, j}.

Based on these definitions and observations, Proposition 1 state conditions when variables x, w, and
z can be fixed to zero.

Proposition 1 Given a lower bound LB, associated reduced cost c̃ and dual multipliers λ̄, as well as an
upper bound UB, a variable zkij can be fixed to zero if

LB + D̃k
ij + max{0, pkcke − λ̄ke} > UB (7)

holds. Similarly, variable wkij can be fixed to zero if

LB + D̃k
ij + max{0, λ̄ke − pkcke}+ max{0, c̃0e} > UB (8)

holds. Finally, variable xe can be fixed to zero if

LB + min
k∈K

D̃k
e + max{0, c̃0e} > UB (9)

holds.

Proof The correctness of the given statements follows from the discussions in the previous paragraphs.
Moreover, conditions (8) and (9) exploit the fact that if c̃0e ≤ 0, then the corresponding first-stage edge
e will already be chosen in an optimal solution of L0(λ̄), and thus its reduced cost can be set to zero.

Conditions (8) and (9) consider only one scenario at a time. Consequently, they can be strengthened
based on the property that in an optimal solution, in almost all cases, a first-stage edge needs to to be
used in multiple scenarios in order to pay off. More formally, if e ∈ E is part of an optimal solution’s
first stage, then there exists a set of scenarios K∗ ⊆ K such that

∑
k∈K∗ p

kcke ≥ c0e. For each k ∈ K∗
the same path-based arguments apply as made for Proposition 1. The following two conditions again
employ an underestimation of the incurred reduced cost based on the solution of knapsack problems in
minimization form.
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Proposition 2 Given a lower bound LB, associated reduced cost c̃ and dual multipliers λ̄, as well as an
upper bound UB, a variable xe can be fixed to zero if

LB + min
K∗⊆K

{ ∑
k∈K∗

D̃k
e :

∑
k∈K∗

pkcke ≥ c0e
}

+ max{0, c̃0e} > UB (10)

holds. Similarly, variable wkij can be fixed to zero if

LB + D̃k
ij + max{0, λ̄ke − pkcke}+ min

K∗⊆K\{k}

{ ∑
`∈K∗

D̃`
e : pkcke +

∑
`∈K∗

p`c`e ≥ c0e
}

+ max{0, c̃0e} > UB

(11)

Proof For condition (10), let K ′ ⊆ K be the optimal set of scenarios that uses edge e in the first-stage,
given that xe = 1. From the path-based discussions in the previous paragraphs,

∑
k∈K′ D̃

k
e is a valid

underestimation of the incurred reduced cost over all scenarios. By definition, it holds that
∑
k∈K′ p

kcke ≥
c0e and

∑
k∈K∗ p

kcke ≥ c0e. Therefore
∑
k∈K∗ D̃

k
e ≤

∑
k∈K′ D̃

k
e , and consequently

∑
k∈K∗ D̃

k
e is also an

underestimation. The argument for condition (11) is equivalent, except that scenario ` ∈ K, is forced
into the knapsack, and the direction in which e is used in scenario ` is fixed.

In order to compute all required shortest paths, for each scenario we need two executions of Dijkstra’s
algorithm using reduced cost c̃ as arc lengths: One execution is on GD using r as source, and the other
one is on a modified version of GD, in which all arcs are inverted and an artificial source node has
been added; this node is connected to each terminal T k \ {r}. This requires O(|K|(|A|+ |V | log |V |)). In
order to apply conditions (10) and (11), integrality is relaxed and the so-called Dantzig bound is used.
The resulting LP can be solved in O(|K| log |K|) by choosing elements in ascending order based on their
utility ratio D̃k

e/(p
kcke) for all k ∈ K. Both for the computation of shortest paths and knapsacks, existing

variable fixing is taken into account.

3.2 Warmstart using dual ascent

In order to accelerate the convergence of a Lagrangian-based decomposition approach, in some cases it is
essential to initialize the procedure with a suitable choice of Lagrangian dual multipliers (see, e.g., [12,13]
for details on the relationship between dual ascent methods and Lagrangian relaxation). To this end, we
propose to run an alternative dual-based approach, namely, a dual ascent procedure. The major benefits
of this procedure are: (i) the obtained dual solution λ̄ is a feasible starting point for (SDCLD3 ), (ii) the
lower bound computed in each step increases monotonically, thus providing fast convergence, and (iii) it
can be performed efficiently (the algorithm runs in O(

∑
k∈K |A|min{|A|, |T k||V |}) time).

The STP admits the heuristic computation of LP relaxation bounds via the dual ascent procedure
by Wong [40]. Although this type of method does not provide tight guarantees on the quality of the
computed lower bound, empirically, the bound is usually quite close to the optimum.

Using an appropriate model as a starting point, this approach can be extended seamlessly to the
SSTP. Let (SDCD3 ) denote the dual of (SDC3) after relaxing the integrality constraints (SDC3:3). Let β
and λ be the dual multipliers associated to (SDC3:1) and (SDC3:2), respectively.

(SDCD3 ) max
∑
k∈K

∑
W∈Wk

βkW∑
k∈K

λke ≤ c0e ∀e ∈ E (SDCD3 :1)

β(Wk
ij) ≤ pkcke ∀(i, j) ∈ A,∀k ∈ K, e = {i, j} (SDCD3 :2)

β(Wk
ij)− λke ≤ 0 ∀(i, j) ∈ A,∀k ∈ K, e = {i, j} (SDCD3 :3)

(βk,λk) ∈ R|W
k|+|E|

≥0 ∀k ∈ K

The dual can be simplified into a condensed dual (SDCD
′

3 ), in which variables λ are eliminated by aggre-

gating inequalities (SDCD3 :3) and combination with (SDCD3 :1). For any solution β̄ ∈ (SDCD
′

3 ), a solution
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(β̄, λ̄) ∈ (SDCD3 ) of equal objective value can be constructed by setting λ̄ke = max{β̄(Wk
ij), β̄(Wk

ji)} for
each e = {i, j} ∈ E and k ∈ K.

(SDCD
′

3 ) max
∑
k∈K

∑
W∈Wk

βkW∑
k∈K

max
{
β(Wk

ij), β(Wk
ji)
}
≤ c0e ∀e = {i, j} ∈ E (SDCD

′

3 :1)

β(Wk
ij) ≤ pkcke ∀(i, j) ∈ A, k ∈ K, e = {i, j} (SDCD

′

3 :2)

βk ∈ R|W
k|

≥0 ∀k ∈ K

Algorithm 1 lists the pseudocode of our dual ascent procedure that computes a heuristic solution to

(SDCD
′

3 ) and extends it to a feasible solution to (SDCD3 ). Starting from the initial solution β̄ = 0,
in each iteration one dual variable βkW = 0 is increased to its maximum possible value while pre-
serving dual feasibility. As dual variables β are exponential in number, they are only tracked implic-
itly by the algorithm according to the reduced cost of constraints (SDCD

′

3 :1) and (SDCD
′

3 :2), c̃0e :=
c0e −

∑
k∈K max{β(Wk

ij), β(Wk
ji)} and c̃kij := pkckij − β(Wk

ij), respectively. Similarly, the objective value
of the constructed dual solution is tracked as variable LB .

Data: SSTP instance (G = (V,E), r, c,p,T )
Result: Lower bound LB , reduced costs c̃ = (c̃0, . . . , c̃k), dual multipliers λ

1 c̃← (c0, p1c1, . . . , p|K|c|K|)
2 Tka ← Tk \ {r} ∀k ∈ K
3 LB ← 0

/* Implicitly set β̄kW = 0 for each W ∈ Wk and k ∈ K. */

4 while
⋃
k∈K

Tka 6= ∅ do

5 (k, i)← chooseActiveTerminal(T 1
a , . . . , T

|K|
a )

6 W ←Wk(i)

7 ∆← min
(i,j)∈δ−(W ),
e={i,j}

min
{
c̃kij , c̃

0
e + max{c̃kij − c̃kji, 0}

}
8 c̃0e ← c̃0e −

(
∆−max{c̃kij − c̃kji, 0}

)
∀e ∈ δ(W )

9 c̃kij ← c̃kij −∆ ∀(i, j) ∈ δ−(W )

10 LB ← LB +∆

11 Tka ← removeInactiveTerminals(Tka )

/* Implicitly set β̄kW = ∆. */

12 end

13 λke ← cke −min{c̃kij , c̃kji} ∀e = {i, j} ∈ E,∀k ∈ K

Algorithm 1: Dual ascent algorithm for (SDCD
′

3 ).

The selection of βkW is performed as follows. First, recall that W induces a Steiner cut w.r.t. k, i.e.,

r /∈W and T k∩W 6= ∅. For an increase of βkW to be feasible, none of the constraints (SDCD
′

3 :2) associated

to its directed cutset δ−(W ) can be tight. Thus, if only constraints (SDCD
′

3 :2) would be considered, the
maximum feasible increase of βkW corresponds to the minimum reduced costs of the cutset’s arcs.

Concerning constraints (SDCD
′

3 :1), the same does not hold for the undirected cutset δ(W ) due to
the max-expression therein. Consider the case where c̃0e = 0 for some e = {i, j} ∈ δ(W ). The associated
constraint does not prevent a further increase of βkW if for the arc (i, j) ∈ δ−(W ) associated to the edge,
β(Wk

ij) < β(Wk
ji) holds. In this case, in addition to an increase by c̃0e, β

k
W can further be increased by

β(Wk
ji)− β(Wk

ij), or equivalently, by c̃kij − c̃kji.
The stated properties can be represented in terms of subgraphs. Let the saturation graph per scenario

k ∈ K be defined as

GkS := GD[AkS ] for AkS = {(i, j) ∈ A : c̃kij = 0 ∨ c̃0e + max{c̃kij − c̃kji, 0} = 0, e = {i, j}}.

The arcs in AkS are referred to as saturated w.r.t. k. Furthermore, let

W k(i) := {j ∈ V : there exists a directed path from j to i in GkS}.
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The algorithm maintains a set of active terminals T ka ⊆ T k \ {r} for each k ∈ K. A terminal i is said
to be active for k if r /∈ W k(i) and |W k(i) ∩ T ka | = 1. The former condition implies that W k(i) induces
a Steiner cut, while the latter implies that W k(i) is a so-called root component. Increasing βkW only for
root components is a criterion which may improve the computed lower bound. An example in which this
is the case and a more detailed discussion is given for Wong’s dual ascent procedure [40].

In each iteration, an active terminal i and scenario k is chosen in Step 3 (chooseActiveTerminal).
Next, the set W k(i) is computed by a reverse breadth-first search on GkS and the maximum possible
increase of βkW is computed and denoted by ∆. Note that whenever the aforementioned condition c̃kij > c̃kji
holds for some edge e = {i, j} ∈ δ(W ), then this amount must be subtracted when updating the
reduced cost in Step 6. Terminals that have become inactive for the current k are removed from T ka in
Step 9 (removeInactiveTerminals). The procedure terminates as soon as no active terminals remain,
in which case no variable βkW can be increased without violating some constraint. In Step 11, the dual
multipliers λ are computed based on each scenarios reduced cost. It holds that cke − min{c̃kij , ckji} =

max{β(Wk
ij), β(Wk

ji)} for each e ∈ E and k ∈ K. Thus if β is feasible to (SDCD
′

3 ), the corresponding

assignment (β,λ) is feasible to (SDCD3 ).

Further details (e.g., in which order to choose active terminals) follow closely dual ascent procedures
for the STP (see, e.g., [28]), and are thus omitted. The following propositions state basic properties of
Algorithm 1.

Proposition 3 β̄ is feasible for (SDCD
′

3 ) in each iteration of Algorithm 1.

Proof The initial assignment of c̃ implies β̄ = 0, which is feasible and LB = 0 corresponds to its objective
value. In each iteration of the main loop, for the chosen terminal i and scenario k, and the resulting set
W , it holds by definition that r /∈ W and δ−(W ) ∩ AkS = ∅. It follows that ∆ > 0. At the beginning of
any iteration, βkW = 0. As ∆ is computed as the minimum feasible increase based on the reduced cost of
all involved constraints, setting βkW to ∆ results in feasible solution.

Proposition 4 The worst-case time complexity of Algorithm 1 is O(
∑
k∈K
|A|min{|A|, |T k||V |}).

Proof For each scenario k ∈ K the following holds: In each iteration at least one arc will be saturated
w.r.t. k. Moreover, for each i ∈ T k \ {r}, at most |V | iterations can be performed, as at this point
r ∈ W k(i), and i becomes inactive for k. Thus min{|A|, |T k||V |} is an upper bound on the number
of performed iterations for each k ∈ K. Each iteration takes at most |A| steps, as the most complex
operation performed is a breadth-first search.

3.3 Refinement by applying Benders decomposition

In this section a Benders decomposition based on (SDCFB
3 ) is detailed. This approach is in the spirit

of the two-stage B&C approach introduced in [2] for (SDC2). The Benders master problem is stated as
follows.

(SDCB3 ) min
∑
e∈E

c0exe +
∑
k∈K

pkθk

s.t. θk ≥ Φk(x) ∀k ∈ K (SDCB3 :1)

x ∈ {0, 1}|E|,θ ∈ R|K|≥0

In this reformulation of (SDCFB
3 ), the variables z and w associated to the second stage have been

projected out of the model. In their place, non-negative variables θ denote the second-stage cost for each
scenario. This property is ensured by constraints (SDCB3 :1). For each k ∈ K and first-stage solution x̄,
the recourse function Φk(x̄) gives the corresponding second-stage cost, and is computed by solving the
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following Benders subproblem.

Φk(x̄) := min
∑

(i,j)∈A

ckijz
k
ij

s.t. wk(δ−(W )) + zk(δ−(W )) ≥ 1 ∀W ∈ Wk (βkW ) (S:1)

wkij + wkji ≤ x̄e ∀e = {i, j} ∈ E (λke) (S:2)

(zk,wk) ∈ {0, 1}2|A|

As the recourse function is neither convex or continuous, dynamically separated fractional and integral
Benders optimality cuts are used in order to underestimate the value of Φk(x̄). In stochastic programming,
this approach is also referred to as the L-shaped method (see, e.g., [24], and [3] for problems with integer
recourse). No Benders feasibility cuts are required as the SSTP has complete recourse.

Our implementation of this Benders decomposition approach is as follows: a branch-and-cut is em-
ployed to solve the master problem. Each time a new fractional master solution is found, Fractional
Benders optimality cuts are added to the master. Each time an integer master solution is found, Integer
Benders optimality cuts are inserted. Separation of these Benders cuts requires another cutting plane
procedure (for separating fractional points) and a branch-and-cut procedure (for separating integer ones),
which is why the method is called two-stage B&C (see [2,27] for further details).

Integer Benders optimality cuts Given x̄ integer, each Benders subproblem corresponds to an SAP in
which the cost of arcs associated to the chosen first-stage edges are set to zero. Let E0

S = {e ∈ E : x̄e = 1}
denote the set of chosen first-stage edges induced by x̄. Then the following optimality cuts are valid.

θk ≥ Φk(x̄)−
∑

e∈E\E0
S

ckexe ∀k ∈ K (SDCB3 :INT)

The validity of (SDCB3 :INT) can be shown as follows. If an additional edge e /∈ E0
S is added to the

first stage, then the second-stage cost of scenario k can only decrease by at most cke , i.e., the cost of the
associated second-stage arc. Conversely, the cut remains valid if an edge e ∈ E0

S is removed from the
first stage, as in this case the cost of each second-stage solution cannot decrease. In our implementation,
we compute the value of Φk(x̄) by using the exact solver presented in [26].

Fractional Benders optimality cuts For the purpose of cutting off fractional solutions x̄, we relax the
integrality constraints of the Benders subproblem and dualize the resulting LP to obtain a valid un-
derestimation of Φk, denoted by Φk. Variables β and λ are associated to constraints (S:1) and (S:2),
respectively.

Φk(x̄) := max
∑

W∈Wk

βkW −
∑
e∈E

x̄eλ
k
e (D:1)

s.t. β(Wk
ij) ≤ ckij ∀(i, j) ∈ A (D:2)

β(Wk
ij)− λke ≤ 0 ∀(i, j) ∈ A, e = {i, j} (D:3)

(βk,λk) ∈ R|W
k|+|E|

≥0 (D:4)

Let (β̄
k
, λ̄

k
) denote an optimal solution to (D:1)–(D:4). Then the following optimality cuts are valid.

θk ≥
∑

W∈Wk

β̄kW −
∑
e∈E

λ̄kexe ∀k ∈ K (SDCB3 :FRAC)

In our framework the computation of (β̄
k
, λ̄

k
) is performed by applying row generation to the relaxed

primal Benders subproblem. Thus constraints (S:1) are separated dynamically, following the two-stage
B&C that has also been applied in [2,27].
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Lagrangian Benders optimality cuts A large number of optimality cuts may form a potential bottleneck
of the Benders decomposition approach. Especially at the beginning to the procedure, a large number of
cutting planes may be separated due to little information on the original problem being presented in the
master. A possible solution to this situation is the generation of an initial set of Benders optimality cuts
using a set of high-quality dual solutions collected by the Lagrangian approach detailed in Section 3.1.

For this purpose, first observe that the Benders optimality cuts derived from suboptimal solutions

to (D:1)–(D:4) are also valid. Consider for any k ∈ K a feasible dual solution (λ̄
k
, β̄

k
) to one of the

relaxations of the Lagrangian subproblems Lk(λ̄) detailed in Section 3.1. As the solution satisfies

β̄(Wk
ij) ≤ min{λ̄ke , pkckij} ∀(i, j) ∈ A, e = {i, j},

the scaled solution (λ̄
k
, 1
pk
β̄
k
) is feasible to (D:1)–(D:4). An alternative approach would be to move

coefficients pk into the Benders subproblem by scaling each second-stage cost ckij appropriately. Note
that this is however not recommendable due to potential numerical instabilities caused by small values
of pk.

3.4 Overall framework

In this section we present further details of our algorithmic framework that combines the introduced
approaches into an effective method. To efficiently attack large-scale instances, we focus on the develop-
ment of a purely combinatorial Lagrangian heuristic framework. If the size of an instance allows, only
in the refinement phase we invoke a state-of-the-art ILP solver. The main strategy is to initially apply
“light-weight” methods, i.e., those of low worst-case runtime complexity. Thus we obtain iteratively im-
proved primal and dual solutions, as well as their associated bounds. Using these, we can fix redundant
parts of the instance early on (Section 3.1.1) before applying a more “heavy-weight” technique, i.e., the
Benders decomposition approach detailed in Section 3.3.

With the aim to keep the Lagrangian relaxation approach from Section 3.1 “light-weight”, we resort
to the approximation of subproblems, Lk(λ̄), by fast primal and dual heuristics for the STP/SAP [8,37,
40] in the employed subgradient optimization procedure. This is an attractive option, since for any λ̄,
Lk(λ̄) corresponds to an SAP for each k ∈ K. In contrast, for the Benders decomposition approach, this
is only the case if the master solution is integral in x. Preliminary experiments have shown that such
cases tend to occur rarely, and are solved exactly in our framework in order to guarantee termination
of the B&B procedure. A pseudocode of the full framework is given by Algorithm 2. We proceed by
explaining the used primal heuristics, and then discuss each phase of the framework separately.

Primal heuristics Two complementary procedures are used for obtaining high-quality primal solutions.
In both of them solution construction is decomposed by stage.

– First-stage-based heuristic: The first procedure exploits the fact that given a feasible first-stage
solution x̄, the SSTP decomposes into |K| independent instances of the STP. This property is also
exploited in other algorithms for the SSTP, namely the exact framework presented in [2] and the
heuristic by Hokama et al. [19]. In the former, an exact algorithm is employed for the construction of
second-stage solutions, while the latter uses a heuristic. In our implementation we follow the former
and compute optimal solutions by using an exact algorithm. The solver proposed in [26] is applied
with a short time limit to guarantee termination (five seconds per scenario in our implementation).
In the Lagrangian approach, x̄ is obtained from the solution of L0(λ̄). In the Benders approach, x̄ is
obtained by rounding fractional master solutions, i.e., for each edge e ∈ E, if x̄e ≥ 0.5, the variable
is set to one, otherwise to zero. This scheme is potentially time-consuming, as even after fixing the
first stage |K| instances of an NP-hard problem remain to be solved. Thus the next scheme details a
computationally cheaper approach.

– Second-stage-based heuristic: In the second construction procedure, we exploit the fact that in
the employed subgradient optimization algorithm, for each k ∈ K, a heuristic Steiner arborescence
Ak ⊆ A is constructed as solution to Lk(λ̄). From these Steiner arborescences, an optimal allocation
between the first and second stage can be computed as follows: For each e = {i, j} ∈ E, set xe = 1
if
∑
k∈K:(i,j)∈Ak∨(j,i)∈Ak cke ≥ c0e, otherwise, set xe = 0. The assignment of z and w can then be

performed accordingly.
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The consecutive execution of both procedures in our framework is denoted by heuristicsSSTP. Input
parameters are a (potentially fractional) first-stage vector x, as well as a set of second-stage Steiner
arborescences (A0, . . . , A|K|).

Additional variable fixing The STP offers a large arsenal of reduction tests, which allow the transfor-
mation of a problem instance into a smaller instance if specific conditions are satisfied. The simplest
transformation corresponds to the elimination of edges. The following two simple tests can be easily
translated from their STP counterparts [7] into fixing variables of (SDCFB

3 ). Note that the same does
not hold for (SDCFB

2 ), since as already stated, in this case the second-stage solutions do not necessarily
form Steiner arborescences. In order to benefit from these tests (that are valid on undirected graphs)
second-stage arcs are only fixed to zero if both zkij and zkji can be fixed to zero.

The following definitions are required: For each k ∈ K, let Gkz = (V,Ez) denote the undirected
second-stage graph induced by variables zk that have not been fixed to zero, i.e., Ez := {e = {i, j} ∈ E :
zkij 6= 0∨zkji 6= 0}. Let the set Pkij denote all paths that connect i and j on Gkz . A path is elementary if

and only if its endpoints are terminals from T k. Let the bottleneck Steiner distance relative to scenario
k be defined as

SDk
e := min

{
max{

∑
e∈PS

cke : PS is an elementary subpath of P} : P ∈ Pkij
}

∀e = {i, j} ∈ Ek

The concept of the bottleneck Steiner distance has been first considered in [7], and allows the formulation
of an effective edge elimination test, which has been employed in several successful algorithms for the
STP [8,10,31]. Using these definitions, the following two rules for fixing variables are stated for the SSTP
and formulation (SDCFB

3 ). These rules are always applied after the ones based on reduced cost detailed
in Section 3.1.1.

– Second-stage degree one (D1). If a non-terminal i ∈ V \T k has only one adjacent edge e = {i, j}
on Gkz , then wkij , w

k
ij , z

k
ij , and zkji can be fixed to zero. This can be done, as these arcs would never

be part of any Steiner arborescence spanning T k.
– Second-stage bottleneck Steiner distance (SD). If SDk

e < cke , e ∈ E, then zkij and zkji can be
fixed to zero. Concerning the validity of this condition, consider the SD test for the STP [7]. The test
states that any edge e ∈ E with edge cost ce greater than its bottleneck Steiner distance cannot be
part of an optimal Steiner tree. For the SSTP, note that once the set of optimal first-stage edges E0

S is
known, the SSTP decomposes into |K| independent instances of the STP. In each of these instances,
T k is the set of terminals, and edge costs c̄ke = cke if e /∈ EkS and c̄ke = 0 otherwise. For each edge

e ∈ E, let SD
k

e denote the bottleneck Steiner distances on each of these instances, i.e., computed

based on the modified edge cost c̄k. The SD test is valid given an optimal set E0
S . Since SD

k

e < SDk
e

of each k ∈ K and e ∈ E the test is valid for the SSTP.
In our implementation, we compute a heuristic approximation of SDk

e for edges e ∈ E by a modified
implementation of Dijkstra’s algorithm, in which additional distance labels are stored which are set
to zero whenever a terminal is encountered. Moreover, due to the test condition, the search can be
restricted to paths of length at most cke .

Algorithm 2 lists the pseudocode of the proposed framework. Three phases can be distinguished: (i)
initialization by dual ascent, (ii) subgradient optimization, and (iii) refinement by using the Benders
decomposition approach.

– Initialization (Dual ascent). In Step 2, the dual ascent procedure for the SSTP (cf. Section 3.2,
denoted by dualAscentSSTP in the pseudocode) is used to obtain a globally valid lower bound LB ,
associated reduced cost c̃, and an initial set of dual multipliers λ̄. Moreover, the corresponding
saturation graphs GkS are returned. For each k ∈ K, the shortest path heuristic for the STP [37]
(sphSTP) is applied onGkS in order to obtain a heuristic Steiner arborescence Ak. Running the heuristic
on GkS instead of GD is known to improve the performance of STP heuristics due to complementary
slackness [31]. Naturally, the same holds in case of the SSTP. Based on an initial first-stage solution
(x̄ = 0) and the computed Steiner arborescences, a feasible solution S to the SSTP is computed in
Step 4 (heuristicsSSTP). Throughout the algorithm, S represents the incumbent solution. After this
initial computation of lower and upper bounds, an initial round of variable fixing is applied in Step 5
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(cf. Section 3.1.1, variableFixing). The set CutPool is used to collect optimality cuts derived from
dual solutions in the next phase.

– Subgradient optimization. Parameter ρ denotes the step-size used for updating the Lagrangian
dual multipliers λ̄ in each iteration. Initially, ρ = 2. Further details on the employed schedule for
updating ρ are given after all other operations executed within each iteration have been presented.
The main loop is executed until a fixed iteration limit has been reached, or all first-stage variables
have been fixed to one or zero. In the latter case, the SSTP decomposes into a set of STP instances,
which are solved using the exact solver from [26] that is also applied in the primal heuristic (but here
without the timelimit).
In Steps 9–10, the Lagrangian costs are computed and the Lagrangian subproblem L0(λ̄) is solved
(solveLagrangianFirstStage). At this point we exploit a simple observation, namely that in an
optimal solution the subgraph induced by the first-stage, i.e., G[E0

S ], is cycle-free. This property is
efficiently incorporated into the solution of L0(λ̄): Variables x with non-positive Lagrangian cost are
set to one iteratively in ascending order according to c̃. Any variable that would introduce a cycle in
the induced subgraph is skipped.
In Steps 11–16, for each k ∈ K, the Lagrangian subproblem Lk(λ̄) is solved heuristically. This requires
the computation of a lower bound LBk and a heuristic primal solution. Note that the latter is required
in order to compute a subgradient for updating λ̄. In Step 12, the modified cost vector c′ is computed
as the minimum between λ̄ and pkcke . In the next steps, the dual ascent procedure for the SAP [40]
(dualAscentSAP) and the shortest path heuristic [37] (sphSAP) are executed based on a randomly
selected root node rk, terminals T k, and the modified cost c′. As in the initialization phase, the
saturation graph GkS is exploited to improve the performance of the primal heuristic. The random
choice of the root node perturbs both the primal and dual heuristic, and as a consequence repeating
Steps 11–16 for multiple roots may yield solutions of improved quality. In our implementation, we
repeat these steps at most five times, and keep only the best primal and dual solutions. If for one
scenario k ∈ K, the solutions’ corresponding lower and upper bounds coincide, then of course no
further repetitions are necessary for this scenario, as this subproblem is solved to optimality. We
choose to not represent this repetition in the pseudocode for brevity and ease of exposition.
In Steps 17–28, the computed information is aggregated (reduced cost, bounds, and Steiner arbores-
cences). The primal heuristic is started in Step 19 (heuristicsSSTP). Due to its computational
complexity, the first-stage-based heuristic (which requires the solution of STP instances) is only ap-
plied every tenth subgradient iteration, or to refine the solution computed by the second-stage-based
heuristic, if the constructed solution exceeds the quality of the incumbent solution S. The variable
fixing in Step 21 (variableFixing) is only executed if the global lower or upper bound improved
during the current iteration. Moreover, in this case |K| optimality cuts (generateLagrangianCuts)
are generated and added to the CutPool. Note that for the generation of the cuts, it is sufficient to use
the lower bounds for each subproblem – the concrete assignment of dual variable β is not required.
Finally, in Steps 29–32, a subgradient s is computed based on the primal solutions to subproblems
Lk(λ̄), k ∈ K, computed in the course of this iteration. For this purpose, in Step 29 the corresponding
vectors z̄ and w̄ are retrieved (assignStage) as follows: For each k ∈ K, zkij = wkij = 0 if (i, j) /∈ Ak.

For (i, j) ∈ Ak, wkij = 1 and zkij = 0 if λke < pkcke . Otherwise, the converse holds.

The dual multipliers λ̄ are updated based on the standard scheme for subgradient optimization (see,
e.g., [9,18]), as is the step-size ρ. More complex update schedules have been explored in preliminary
experiments, but as no significant improvements in convergence could be achieved on the tested
benchmark set, we prefer the standard scheme due to its simplicity: If for κ consecutive iterations the
global lower bound LB does not improve, ρ is halved. We set κ := 20 and the iteration limit to 250.

– Refinement (Benders decomposition). In Step 34, the two-stage B&C based on Benders decom-
position is started (refinement). We initialize this final step using the incumbent solution S and
the Lagrangian optimality cuts collected in CutPool. Similarly, we initialize the Benders subproblems
using a set of connectivity cuts, which we derived from the SAP dual ascent algorithm (see, e.g., [31])
Moreover, whenever a subproblem is solved, all separated connectivity cuts remain valid for any
given first-stage vector. Thus these inequalities are also used to initialize all subsequent iterations.
In addition to the separation of connectivity cuts, we also chose to separate the strengthening flow-
balance inequalities (SDC3:FB) dynamically. A related family of valid inequalities can be derived
from the SAP [21]. For the SAP, these inequalities are known to be implied by the optimal solution
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of the LP relaxation of its directed cut formulation. However, it is known empirically that a subset
of them (dynamically separated) can decrease the number of necessary cutting plane iterations. The
inequalities (SDC3:4) are valid for (SDCFB

3 ), and thus also for (SDC3).

wk(δ−(i)) + zk(δ−(i)) ≥ zkij + zkji + wkij + wkji ∀(i, j) ∈ δ+(i),∀i ∈ V \ T k,∀k ∈ K (SDC3:4)

Tailing-off behavior of the cut-loop at the root node is detected as follows. Let LBB
(i) denote the

lower bound at iteration i of the row generation procedure applied to (SDCB3 ) within the root
node of the B&C tree. If for κ′ consecutive iterations the relative lower bound improvement, i.e.,
(LBB

(i+1) − LBB
(i))/LBB

(i+1), remains below a threshold τ , then the cut loop is terminated and we
begin to branch. In our implementation κ′ := 5 and τ := 1e−10. The same approach is applied within
each subproblem.

Data: SSTP instance I = (G = (V,E), r, c,p,T).
Result: Lower bound LB , feasible solution S.

/* initialization phase */

1 x̄← 0

2 (LB , c̃, λ̄,GS)← dualAscentSSTP(I)

3 for k ∈ K do Ak ← sphSAP(GkS , r, c
k, Tk)

4 (UB , S)← heuristicsSSTP(I, x̄, A1, . . . , A|K|)

5 variableFixing(I,LB , c̃, λ̄,UB)
6 CutPool ← ∅

/* subgradient optimization phase */

7 ρ← 2
8 for i = 1 to iteration limit do

/* solve master problem */

9 c̃0e ← c0e −
∑
k∈K λ̄ke ∀e ∈ E

10 x̄← solveLagrangianFirstStage(c̃0)

/* process subproblems (restart for multiple roots) */

11 for k ∈ K do

12 c′ij ← min{λ̄ke , pkcke} ∀(i, j) ∈ A, e = {i, j}
13 rk ← chooseRandomRoot(Tk)

14 (LBk, c̃k, GkS)← dualAscentSAP(GD, r
k, c′, Tk)

15 Ak ← sphSAP(GkS , r
k, c′, Tk)

16 end

/* update bounds, fix variables, collect optimality cuts */

17 c̃← (c̃0, c̃1, . . . c̃|K|)

18 LB(i) ←
∑
e∈E c̃

0
ex̄e +

∑
k∈K LBk

19 (UB(i), S
′)← heuristicsSSTP(I, x̄, A1, . . . , A|K|)

20 if LB(i) > LB ∨UB(i) < UB then

21 variableFixing(I,LB(i), c̃, λ̄,UB)

22 CutPool ← CutPool ∪ generateLagrangianCuts(LB1, . . . ,LB |K|, λ̄)

23 end
24 if UB(i) < UB then
25 S ← S′

26 end
27 UB ← min{UB ,UB(i)}
28 LB ← max{LB ,LB(i)}

/* update subgradient data */

29 (z̄, w̄)← assignStage(I, λ̄, A1, . . . , A|K|)

30 ske ← x̄e − w̄kij − w̄kji ∀e = {i, j} ∈ E, ∀k ∈ K

31 λ̄ke ← max
{

0, λ̄ke + ρ
UB−LB(i)

‖s‖ ske
}

∀e ∈ E, ∀k ∈ K
32 ρ← updateStepSize(ρ)

33 end

/* refinement phase */

34 (LB , S)← refinement(S,CutPool)

Algorithm 2: Framework (SDCLD3 ).
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4 Computational results

All algorithms have been implemented in C++. Recall that the subgradient procedure is a combinatorial
approach, and that only for the Benders decomposition part, CPLEX 12.7 is used as a ILP solver. Tests
have been performed single-threaded on an Intel Xeon CPU E5-2670v2 (2.5 GHz). On each test run a
time limit of one hour and a memory limit of 6 GB is set. The performance evaluation is conducted
on instances from the SSTPLib [34], which are part of the benchmark set employed during the 11th
DIMACS Implementation Challenge on Steiner trees [35,19]. These instances have been generated from
STP instances available in the SteinLib [2,22]. Moreover, based on the same scheme we have generated
new large-scale benchmark instances from real-world STP instances [25] which have also been used
during the challenge. The graphs in these instances have been generated from spatial data for the design
of infrastructure networks. We restrict ourselves to the ten smallest instances from this dataset (“vienna-
i-simple”), which already exceed the size of previous instances significantly. The new dataset is referred
to as VIENNA and made available online at https://msinnl.github.io/pages/sstp.html (detailed
results for each instance are also availabe). The average characteristics of all benchmark instances are
listed in Table 1.

For each dataset except VIENNA, |K| ∈ {5, 10, 20, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000}.
For VIENNA, only instances with up to 50 scenarios have been created due to their large size. For perfor-
mance plots instances are aggregated into a group of small instances SMALL := {K100,P100,LIN01-10,WRP}
and a group of large-scale instances LARGE := {VIENNA}. Tests are conducted on 600 benchmark in-
stances in total.

Table 1 Basic properties of our benchmark instances.

|V | |E| |K|
dataset inst [#] min avg max min avg max min avg max

K100 154 22 31 45 64 115 191 5 272 1000
P100 70 66 77 91 163 194 237 5 272 1000
LIN01-10 140 53 190 321 80 318 540 5 272 1000
WRP 196 10 194 311 149 363 613 5 272 1000

VIENNA 40 1991 5756 9574 3176 9347 16208 5 21 50

In each table reported in the remainder of this section, columns t[s] and tb[s] denote the running
time and the time at which the best solution has been found in seconds. Columns inst [#] and solv [#]
denote the number of instances in a given group and the number of instances solved to optimality,
respectively. Columns g[%] and Pg[%] denote the relative optimality and primal gap, computed as
g[%]:= (UB − LB)/UB and Pg[%]:= (UB − BEST )/UB , respectively. Here the values LB and UB refer
to the best lower and upper bound computed by a method on a given instance, while BEST denotes the
best upper bound computed by one of the compared methods.

We begin our computational study by analyzing the contributions of the proposed components of
the Lagrangian decomposition framework. Once their effectiveness has been established, we compare the
performance of the total framework with state-of-the-art exact and heuristic solution methods given in
[2,27] and [19], respectively.

4.1 Effects of the dual ascent initialization

We first analyze the benefits of initializing the subgradient algorithm (see Section 3.4) with the dual
solution computed by the dual ascent procedure (see Section 3.2). For this purpose, both the variable
fixing based on reduced cost and reduction tests (see Sections 3.1.1 and 3.4), as well as the refinement
(see Section 3.3) have been deactivated. The following two settings are compared:

– L: This is a basic subgradient procedure in which an initial set of multipliers is computed as λke =
pkcke , e ∈ E, k ∈ K, which corresponds to no first-stage edge being selected. In this setting the SSTP
dual ascent is not executed during the initialization phase, the initial primal solution S is computed
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only using the first-stage-based heuristic (i.e., Step 3 of Algorithm 2 is hence skipped due to no
saturation graphs being available).

– DL: In this setting the SSTP dual ascent is executed as specified in the overall framework (Algo-
rithm 2) and the the subgradient algorithm is started from the computed dual multipliers.

Figure 8 reports the optimality gaps obtained by the two settings after the one-hour time limit. In
the two cumulative charts (one per group), we report the percentage of instances solved within a certain
optimality gap. One observes that this warm-starting has a significant impact on the performance of the
subgradient procedure, both on small and large-scale instances. The effect is particularly pronounced for
group LARGE, where the worst optimality gaps remain below to 3%. On the contrary, if the SSTP dual
ascent is skipped, the final gap achieved by the subgradient method lies between 5% and 30% for almost
all instances of this group. This significant optimality gap is a direct consequence of low-quality dual
solutions, which yield lower bounds far from the optimum. As a consequence, also the upper bounds rarely
improve beyond the ones computed by the initial heuristic, further amplifying the difference between the
tested settings. When starting from the given dual ascent solution, improvements of lower and upper
bounds have usually been observed after few iterations on almost all benchmark instances. Thus these
dual multipliers are a good starting point for further improvement.
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Fig. 8 Optimality gap charts for SMALL and LARGE instances with dual ascent initialization of the subgradient algorithm
(DL) and without (L).

4.2 Effects of variable fixing

In order to quantify the effects and benefits of the variable fixing conditions presented in Sections 3.1.1
and 3.4, we first report on the number of variables/edges that can be eliminated due to these tests.
Observe that these operations are valid for any given vector of dual multipliers. Since two algorithms
have been proposed for deriving strong dual multipliers (namely, the dual ascent and the subgradient
procedure), we investigate the effects of variable fixing on the following two settings:

– DR: This is the proposed SSTP dual ascent algorithm enhanced by variable fixing. This means that
only the initialization phase of the proposed framework is executed, i.e., Algorithm 2 is executed up
to Step 5.

– DLR: This is the DL setting from the previous section, enhanced by the variable fixing. In other
words, Algorithm 2 is executed up to Step 33, and the refinement phase is omitted.

Table 2 reports the results of this comparison. Column fixed [%] lists the average percentage of elim-
inated variables. In the following, we use f1 and f2 in order to refer to the two types of variable fixing
rules introduced in this article: reduced-cost-based fixing (Section 3.1.1) and reduction-test-based fix-
ing (Section 3.4), respectively. Columns f1[%] and f2[%] report the corresponding average percentages
of eliminated variables by the respective rules. In addition, we report the average running time and
optimality gaps of the two settings.
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Table 2 Effects of variable fixing.

DR DLR
dataset fixed [%] f1[%] f2[%] g[%] t[s] fixed [%] f1[%] f2[%] g[%] t[s]

K 35 21 14 2.55 0 71 57 15 0.29 11
P 48 33 15 1.80 1 82 63 18 0.06 18
LIN01-10 10 9 1 3.60 8 27 24 3 1.81 256
WRP 17 9 8 2.04 9 18 10 8 0.32 222
VIENNA 15 5 10 2.02 154 20 9 11 0.88 1782

We observe that already the dual ascent procedure for the SSTP provides very useful primal and
dual bounds that allow a sizable portion of variables (up to almost 50%) to be eliminated. The corre-
sponding optimality gaps are within few percent, explaining the effectiveness of f1, which profits from
the availability of tight bounds. However, the effects achieved by f2 are also considerable, as they man-
age to eliminate up to 15% of all variables. Moreover, on dataset VIENNA these tests manage to even
outperform f1. Even in the worst case, already after the initialization phase at least 10% of all variables
can be eliminated on average.

The effectiveness of the variable fixing is further amplified during the subgradient procedure. Fur-
thermore, the framework manages to decrease the remaining optimality gap to less than 2% on average.
The most impressive results are achieved on dataset P100, where on average 82% of all variables are
eliminated. Even on dataset LIN01-10, on which the largest average optimality gap remains (1.81%),
almost 30% of all variables can be eliminated. Between the initialization and subgradient phase, the
amount of variables fixed by f1 is more than doubled in most cases. The only dataset seemingly resistant
to the bound-based variable fixing f1 is WRP, on which even after reducing the gap from over 2% to
almost 0.3% during the subgradient phase, only few additional variables can be fixed.

Figure 9 demonstrates the influence of the employed variable fixing w.r.t. the overall performance. We
compare the optimality gaps at the end of the subgradient procedure without fixing (setting DL described
above), and with fixing enabled (setting DLR). The results on SMALL instances show that the proposed
tests are effective. The tighter the bounds, the larger the decrease in the optimality gap. More precisely,
for about 20% of SMALL instances, the gap without variable fixing is below 0.1%. After including the
variable fixing, 40% of SMALL instances can be solved within 0.1% to optimality. On LARGE instances,
an improvement can still be observed, but the bounds appear to be not sufficiently tight in order to
yield a significant boost of performance. However, even though the effects of the proposed fixing on the
subgradient algorithm may appear minor, such eliminations are certainly essential when entering the
exact algorithm during the refinement phase.
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Fig. 9 Optimality gap charts for SMALL and LARGE with (DLR) and without (DL) reduction tests and variable fixing.

4.3 Effects of the Benders decomposition approach

Upon the termination of the subgradient phase, our framework enters the refinement phase, in which
the Benders decomposition approach is called. We now report on the improvements that are achieved in

22



this final phase. Note that we still only consider the performance of the method in the root node of the
B&C tree. We compare the best performing setting so-far (DLR) with the setting in which the Benders
decomposition approach is called after the subgradient algorithm (denoted by DLRB3). Figure 10 reports
the optimality gaps of the two settings. As expected, an improvement of the computed bounds is achieved.
The results are particularly striking for the SMALL instances. On the LARGE instances, the effect is
much less pronounced, as these instances appear to be too large to be effectively handled by using an
ILP solver.
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Fig. 10 Optimality gap charts for SMALL and LARGE with (DLRB3) and without (DLR) Benders decomposition applied
as a refinement procedure.

Finally, Figure 11 shows the average development of the optimality gap relative to running time.
The colors and line styles are chosen according to the configurations applied in the previous Sections
(see Figure 8–10). Note that a time limit of one hour is applied. If an instance finishes processing
the root B&B node early, its final gap is used in the computation of the average gap for subsequent
time points. The average gap is only computed at the time instants shown by the dots on each line
while linear interpolation is applied in between. On SMALL and LARGE instances, we can observe
that the convergence is significantly improved by starting from the solution provided by the SSTP dual
ascent procedure. Moreover, one can observe that on the LARGE instances, although the variable fixing
finally pays off in the form of a smaller final optimality gap, initially it can be a computational burden
if the available bounds are not sufficiently tight. In our implementation, a potential bottleneck is the
computation of special distances, which are recomputed from scratch in each check. Thus this effect could
be remedied by an improved implementation in which these distances are updated dynamically [31].
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Fig. 11 Average development of the optimality gap w.r.t. running time.
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4.4 Comparison with the state-of-the-art

The results obtained in the previous sections suggest that the combination of our framework’s components
yields a computational performance which is fairly robust both with respect to small and large-scale
instances. In this section, we proceed by comparing the performance of our new method to the state-of-
the-art exact algorithm presented in [2,27], a Benders decomposition approach based on a two-stage B&C
and formulation (SDC2). Moreover, the quality of the obtained primal solutions is compared with the
heuristic by Hokama et al. [19], a genetic algorithm introduced during the 11th DIMACS Implementation
Challenge on Steiner trees.

In order to provide a fair comparison, the method from [2,27] has been carefully reimplemented.
Moreover, the approach has been improved as follows: The strengthening flow-balance inequalities intro-
duced in Section 2.2 are separated dynamically, together with the following valid inequalities, which are
the counterpart to (SDC3:4) for formulation (SDC2).

yk(δ−(i)) ≥ ykij + ykji − xe ∀(i, j) ∈ δ+(i),∀i ∈ V \ T k, e = {i, j},∀k ∈ K (SDC2:4)

For each k ∈ K, the cut pool of the corresponding subproblem is initialized using the set of connectivity
cuts detected by the dual ascent procedure for the SAP. The resulting algorithmic approach is denoted
by B2. In the following experiments, the performances of DLRB3 and B2 are compared with respect to
the exact solution of instances, i.e., the ILP solver is not restricted anymore to the root node of the B&C
tree as in the previous section.

Figure 12 shows optimality gap charts on instance groups SMALL and LARGE. On the LARGE
instances, DLRB3 significantly outperforms B2 with respect to the computed optimality gaps. The results
on SMALL instances show that DLRB3 manages to obtain significantly smaller gaps in the worst-case
(3% instead of 7%). In addition, also more instances can be solved within a gap of 0.1% than with B2.
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Fig. 12 Optimality gap charts comparing DLRB3 and B2.

A more detailed view of these results is given in Tables 3–6. In each table instances have been
aggregated based on |K|. Moreover, the average quality of primal solutions (columns Pg[%]) and the
average times at which the best solutions have been found (columns tb[s]) are reported. The results of
the heuristic by Hokama et al. [19] are denoted by H. Their results have been computed on an Intel Xeon
CPU E3-1230 V2, (3.30GHz), implemented in C++, and run for a time limit of one hour. The CPU is
thus slightly faster than the one used for testing our own implementations.

Table 3 summarizes results on dataset K100 and P100. Both DLRB3 and B2 manage to solve these
instances to optimality within the time limit. On K100, both methods require approximately equal time
for this task, while DLRB3 usually obtains the best primal solutions faster, due to its “light-weight”
initialization approach. On P100, DLRB3 significantly outperforms B2. On both K100 and P100, the
solution quality obtained by H is on average within 1%. However, the time required to reach this quality
is significantly higher than the time needed to solve the instance to optimality by DLRB3.

Table 4 summarizes the results on dataset LIN01-10 and WRP. We observe that on LIN01-10, DLRB3

significantly outperforms the results achieved by B2. This is the case with respect to the number of
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Table 3 Results on datasets K100 and P100 (all solved to optimality by DLRB3 and B2, columns Pg[%] are thus omitted).

t[s] Pg[%] tb[s]
|K| DLRB3 B2 H DLRB3 B2 H

5 1 1 2.31 0 1 1
10 1 1 0.86 1 1 1
20 2 2 0.68 1 1 2
50 3 3 0.81 2 2 5
75 4 5 0.55 2 4 8

100 5 5 0.58 3 4 11
150 9 8 0.57 6 6 16
200 13 12 0.52 8 9 23
250 15 16 0.55 6 11 28
300 19 17 0.88 9 14 30
400 27 22 0.72 15 18 40
500 32 28 0.60 18 18 57
750 44 47 0.66 26 36 93

1000 68 61 0.82 32 35 121

t[s] Pg[%] tb[s]
|K| DLRB3 B2 H DLRB3 B2 H

5 0 13 0.71 0 12 3
10 1 12 0.84 0 9 5
20 2 15 0.98 1 9 13
50 2 32 0.83 1 21 32
75 6 43 1.03 3 30 48

100 8 58 1.05 1 18 59
150 13 81 0.77 2 26 105
200 20 110 0.94 3 32 139
250 26 145 0.83 4 37 177
300 29 159 0.77 6 44 184
400 41 206 0.89 4 55 272
500 49 270 0.89 7 65 340
750 83 419 0.81 28 129 534

1000 107 536 1.00 10 156 689

instances solved, average remaining optimality gap, the average required running time, and the quality
of primal solutions. Moreover, the heuristic approach is outperformed by both DLRB3 and B2.

On dataset WRP, DLRB3 computes slightly better bounds on average and also better primal solution.
However, the average solution time is slightly higher than B2, and as a consequence in some cases less
instances can be solved to optimality within the time limit. This property is mainly a consequence of
the larger number of variables of model (SDCFB

3 ), a burden that outweights its gain on this specific type
of dataset. As already noted in Section 4.2, despite the availability of very tight bounds, our reduced-
cost-based variable fixing tests are not capable of eliminating many variables on these instances. Here, a
more light-weight modeling approach appears more beneficial when the main aim is to solve instances to
optimality. Finally, we can observe that the heuristic approach H manages to outperform both DLRB3

and B2 with respect to solution quality on instances with at least |K| = 200. However, on average a
significant amount of time is required to reach this quality.

Table 4 Results on datasets LIN01-10 (10 instances per |K|) and WRP (14 instances per |K|).

solv [#] g[%] t[s] Pg[%] tb[s]
dataset |K| DLRB3 B2 DLRB3 B2 DLRB3 B2 DLRB3 B2 H DLRB3 B2 H

LIN01-10 5 8 6 0.35 0.91 1294 1470 0.00 0.24 1.26 994 725 16
10 8 6 0.06 0.65 1213 1478 0.00 0.24 1.14 793 727 27
20 8 6 0.05 0.51 1041 1489 0.00 0.13 0.77 889 27 62
50 9 6 0.00 1.01 1155 1542 0.00 0.07 0.57 903 96 146
75 9 6 0.00 1.32 1319 1583 0.00 0.06 0.67 1147 131 187

100 8 6 0.03 1.52 1426 1603 0.00 0.06 0.72 1322 159 260
150 6 6 0.11 1.76 1533 1656 0.00 0.03 0.62 673 150 355
200 6 6 0.22 1.98 1557 1717 0.00 0.00 0.54 86 196 684
250 6 6 0.32 2.15 1592 1773 0.00 0.01 0.53 466 235 708
300 6 6 0.39 2.21 1636 1839 0.00 0.00 0.64 131 288 947
400 6 6 0.67 2.28 1690 1986 0.00 0.00 0.59 166 389 1223
500 6 6 0.83 2.35 1742 2120 0.00 0.00 0.53 213 484 1659
750 6 5 0.97 2.53 1900 2458 0.00 0.00 0.51 321 694 2407

1000 6 3 1.01 2.85 2065 2543 0.00 0.10 0.50 562 1061 3072

WRP 5 6 6 0.10 0.16 2126 2177 0.00 0.04 0.23 821 1270 14
10 7 6 0.08 0.18 1894 2143 0.00 0.07 0.18 881 1352 30
20 7 7 0.08 0.15 1866 2023 0.01 0.06 0.13 1098 1541 73
50 7 7 0.09 0.12 1950 1974 0.02 0.04 0.11 1679 1610 170
75 6 7 0.09 0.16 2184 2108 0.01 0.06 0.11 1525 1717 277

100 7 7 0.11 0.12 2107 2152 0.04 0.03 0.10 1372 1740 321
150 7 7 0.14 0.17 2184 2158 0.06 0.08 0.08 1510 1841 494
200 6 7 0.16 0.22 2400 2263 0.05 0.10 0.05 1561 1567 627
250 5 6 0.17 0.23 2670 2424 0.06 0.10 0.05 1473 1810 745
300 6 6 0.15 0.26 2760 2477 0.04 0.12 0.05 1762 2012 1111
400 6 6 0.19 0.29 2874 2526 0.05 0.13 0.04 1370 2235 1381
500 5 5 0.24 0.31 2983 2736 0.07 0.14 0.03 1194 2501 1995
750 3 5 0.39 0.39 3120 2966 0.18 0.20 0.03 1016 2199 2233

1000 3 4 0.37 0.47 3323 3132 0.14 0.24 0.01 891 2518 4070

Table 6 reports results on dataset VIENNA. As this large-scale dataset has been newly introduced
in this article with the aim of further testing the limits of our methods, unfortunately no results for
the heuristic by Hokama et al. are available. We can observe that indeed, these instances are more
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challenging than the previously existing datasets, as no instance could be solved to optimality by any
of the tested methods. The obtained results show that on average DLRB3 significantly outperforms B2

both with respect to optimality gaps and the quality of primal solutions. Moreover, the main difference
between these two methods lies mostly in the quality of lower bounds, which for DLRB3 are much tighter
than for B2. This behavior is mainly due to the superior scalability of our Lagrangian heuristic. As a
consequence, even instances with up to 50 scenarios can be handled effectively. In this latter case, average
gaps obtained by B2 are as high as 22%, whereas the respective gaps obtained by DLRB3 remain below
1%.

The success of our approach can be partially attributed to the improved quality of lower bounds due
to the flow-balance inequalities (SDC3:FB). In our algorithmic framework, DLRB3, these constraints
are exploited in the refinement phase, where they are explicitly added to the Benders subproblems. To
measure the impact of these constraints on practical solving, we provide a comparison of lower bounds for
two formulations. Table 5 compares the quality of lower bounds at the root node of our DLRB3 framework,
which corresponds to the (SDC3) formulation enhanced by the inequalities (SDC3:FB) (denoted by
(SDCFB

3 )), and those obtained by the B2 framework, which corresponds to the previous state-of-the-art
formulation (SDC2), enhanced by the weaker (SDC2:FB) constraints (denoted by (SDCFB

2 )). Recall that
the two basic formulations, (SDC2) and (SDC3) are equally strong, and that the bounds obtained by
(SDCFB

2 ) are in theory stronger, whereas those obtained by (SDCFB
3 ) are the strongest ones (cf. Figure

6). For the two groups, SMALL and LARGE, and for each of the two formulations, the following values
are reported in Table 5: the average gap at the root node of the branch-and-bound tree (root gap [%]),
and the average number of branch-and-bound nodes (# nodes). In the last column, we also provide the
relative improvement of the root gap, thanks to the inclusion of our flow-balance constraints.

Table 5 Influence of the flow-balance constraints on the practical solving.

(SDCFB
3 ) (SDCFB

2 )

Group root gap [%] # nodes root gap [%] # nodes rel. improvement

SMALL 0.38 8.25 0.53 6.99 28%
LARGE 9.83 0.00 11.20 0.00 12%

The obtained results show that average gaps at the root node are significantly lower for the formulation
(SDCFB

3 ) and that the stronger flow-balance constraints (SDC3:FB) allow for the relative improvement
of lower bounds by 28% and 12% for SMALL and LARGE instances, respectively. Consequently, a
larger number of instances can be solved to proven optimality within the given time limit (cf. Table
4). Concerning the comparison of lower bounds between the basic formulations (SDC2)/(SDC3) and
(SDCFB

2 ), we did not observe any significant differences, which is why the corresponding values are left
out from the table.

We conclude that the newly developed framework DLRB3 scales well and provides robust performance
for both small-scale and large-scale instances. We recall that the development of similar components
(dual ascent, subgradient algorithm, variable reductions) for enhancing the B2 approach is not straight-
forward. Most of these components exploit the fact that second stage variables model an SAP in each of
the scenarios, a property which does not hold in the ILP model used by B2.

Table 6 Results on dataset VIENNA (none solved to optimality).

solv [#] g[%] Pg[%]
|K| DLRB3 B2 DLRB3 B2 DLRB3 B2

5 0 0 0.77 8.33 0.00 1.88
10 0 0 0.66 6.65 0.00 1.37
20 0 0 0.88 7.33 0.00 1.10
50 0 0 1.03 22.48 0.00 0.90
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5 Conclusions

In this article several new computational techniques for the exact and heuristic solution of the stochastic
Steiner tree problem are studied. These techniques are formulated in terms of a new ILP model that
is shown to be the strongest among known formulation. In the course of this study, also the previously
strongest known formulation has been improved by a new class of strengthening inequalities. But perhaps
most importantly, our new model enables an elegant transfer of methods known to be successful for the
Steiner tree problem.

On this basis, an algorithmic framework has been designed which combines the benefits of three
complementary procedures for computing lower bounds: a fast dual ascent procedure, a Lagrangian
heuristic, and a Benders decomposition approach. The interaction between these methods is facilitated
via an intelligent propagation of primal and dual solutions. Furthermore, these solutions are exploited in
order to considerably reduce the search space via variable fixing, in which both the availability of tight
bounds and problem-specific knowledge is exploited simultaneously.

An extensive computational study shows that our approach significantly outperforms state-of-the-art
methods in almost all cases. The techniques presented in this work combine complementary strengths,
and thus provide a rich foundation for the design of effective algorithms that perform well on a broad
range of instances types. Most importantly, problem instances which can be considered as large-scale with
respect to different types of properties, like the size of the instance graph or the number of scenarios,
can be tackled effectively by these methods.
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