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Abstract The Maximum (Node-) Weight Connected Subgraph ProllgWCS)
searches for a connected subgraph with maximum total weighhode-weighted
(di)graph. In this work we introduce a new integer lineargyeanming formulation
built on node variables only, which uses new constraintethas node-separators.
We theoretically compare its strength to previously use® Mbdels in the literature
and study the connected subgraph polytope associated witheas formulation. In
our computational study we compare branch-and-cut imphkatiens of the new
model with two models recently proposed in the literaturge of them using the
transformation into the Prize-Collecting Steiner Treebpem, and the other one
working on the space of node variables only. The obtainadtemdicate that the
new formulation outperforms the previous ones in terms efrttnning time and in
terms of the stability with respect to variations of nodegtes.

1 Introduction

The Maximum (Node-) Weight Connected Subgraph Prol{ldiVCS) is the prob-
lem of finding a connected subgraph with maximum total weigtnode-weighted
(di)graph. It belongs to the class of network design prolslamd has applications
in various different areas such as forestry, wildlife preagon planning, systems
biology, computer vision, and communication network desig
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Lee and Dooly [18] introduced a cardinality-constrainetsien of the problem
for building a designed fiber-optic communication netwoxleiotime, where the
given node weights reflect their degree of importance. Thefindd themaximum-
weight connected graph problefor an undirected graph with given node weights,
in which they search the connected subgraph of maximum wedatsisting of ex-
actly a predescribed number of nodes. The same problenowensis considered
already in [14] (the authors called@onnected k-Subgraph Problgfor a Norwe-
gian off-shore oil-drilling application.

Another application arises in the area of system biology2[8,1]. Yamamoto
et al. [22] suggest the cardinality-constrained MWCS ineottd detect core source
components in gene networks, which seem to be responsibledalifference be-
tween normal cells and mutant cells. The input graphs arstaacted from gene
regulation networks combined with gene expression datéigeed as node weights.
Maximum weight connected subgraphs are considered to be gaudidates for
these core source components. A directed version of the M\W&Sheen con-
sidered in Backes et al. [1], where the most deregulatedexiad subnetwork in
regulatory pathways with the highest sum of node scoresiif@rirom expression
data) is searched. In their model, they call a subgraph atedd all the nodes are
reachable from one node, also called tbet in the subgraph. The detected roots
are likely to be the moleculdey-playerof the observed deregulation.

A budgeted version arises in conservation planning, whHezddsk is to select
land parcels for conservation to ensure species viahdlitg calleccorridor design
(see, e.g.[7]). Here, the nodes of the graph do not only haste weights associated
with the habitat suitability but also some costs, and thk tado design wildlife
corridors that maximize the suitability with a given limdtdudget. Also in forest
planning, the MWCS arises as a subproblem, e.g., for degjgmicontiguous site
for a natural reserve or for preserving large contiguoustpe of mature forest [3].

A surprising application of the MWCS arises in activity deien in video se-
quences. Here, a 3D graph is constructed from a video in wihiemodes corre-
spond to local video subregions and the edges to their pityximtime and space.
The node weights correspond to the degree of activity oféste and so the maxi-
mum weight connected subgraph corresponds to the portithreafideo that maxi-
mizes a classifier's score [4].

All the above mentioned applications have in common thatMWeCS arises
with node weights only. In many papers, the MWCS has beereddly transform-
ing the given instance to thHerize-Collecting Steiner Tree Probleidere, the given
graph has non-negative node weights and negative edge aastshe task is to
find a maximum weight subtree, where the weight is computeti@sum of the
node and edge weights in the subtree. The Prize-Collectieige3 Tree Problem
has been studied intensively in the literature (see, €16,,20]), and the publicly
available branch-and-cut (B&C) code of [20] is used in magent applications to
solve the underlying problems to optimality.

However, in their recent work, Backes et al. [1] attack the @IS\Wirectly, which
has the advantage to avoid variables for the arcs. The auiggest a new integer
linear programming formulation which is based on node Vdgisonly. The inten-
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tion of our research was to study the MWCS straightly, andutggsst tight MIP
formulations that improve the MIP models from the literatur theory and practice.

Our Contribution: We propose a new MIP model for the MWCS based on the
concept of node separators in digraphs. We provide a theakrahd computational
comparison of the new model with other models recently ugethé literature.
We show that the new model has the advantage of using only vargebles while
preserving the tight LP bounds of the Prize-Collectingr&teilree (PCStT) model.
Furthermore, we study the connected subgraph polytope lamd snder which
conditions the newly introduced inequalities are facetriiej. In an extensive
computational study, we compare different MIP models on taosdenchmark
instances used in systems biology and on an additional seewfork design
instances. The obtained results indicate that the new flation outperforms the
previous ones in terms of the running time and in terms of thieility with respect
to variations of node weights.

The paper is organized as follows. Section 2 contains a fodefanition of the
MWCS and some complexity results. The following Sectiorajute four different
MIP formulations and polyhedral studies. Our B&C algorittamd the practical
experiments are discussed in Section 5.

2 The Maximum Weight Connected Subgraph Problem

In this section we formally introduce the MWCS for directagghs and discuss
some complexity results.

Definition 1 (The Maximum Weight Connected Subgraph Problem, MWCShGive
a digraph G= (V,A), |V| = n, with node weights pV — Q, the MWCS is the
problem of finding a connected subgraph=T(Vr,At) of G, that maximizes the
score OT) = Y ey, Pv and such that there exists a node Vr (calledrootor key
player) such that every other nodesjVy can be reached from i by a directed path
inT.

The MWCS in undirected graphs is to find a connected subgFafttat maxi-
mizes the score(T). However, ifG = (V, E) is an undirected graph, without loss of
generality we will consider its bidirected counterp@ftA) whereA is obtained by
replacing each edge by two oppositely directed arcs. Hérisesufficient to present
results that hold for digraphs (which are more general),thrccorresponding re-
sults for undirected graphs can be easily derived from th#enassume that in our
MWCS instances always positive and negative node weigbtprasent, otherwise,
the solution would be trivial. Observe that any feasibleigsoh of the MWCS con-
tains a tree with the same solution value. Hence it is egeitdb search a maximum
node-weighted tree in the given graph.



4 EduarddAlvarez-Miranda and Ivana Ljubi¢ and Petra Mutzel

Furthermore, it can be distinguished betweenrtieed and unrootedMWCS,
i.e., a root node can be pre-specified or not. In this paper we will concentate
the unrooted MWCS, or simply the MWCS in the rest of the paper.

Regarding the complexity of the MWCS, it has been shown tiaproblem is
NP-hard (in the supplementary documentation of the papgt%jythe authors pro-
vide an NP-hardness proof sketched by R. Karp). Since itssipte to translate the
problem to the Prize-Collecting Steiner tree problem,talpiolynomially solvable
cases carry over to the MWCS. E.g., the PCSIT is solvable lynpaial time for
the graph class of bounded treewidth [2].

Furthermore, one can show that the following result holdémevhen the MWCS
is defined on undirected graphs:

Proposition 1 It is NP-hard to approximate the optimum of the MWCS withig an
constant factod < € < 1.

Proof. For a given MWCS instance, |&PP be the objective function value of an
approximate solution, and I@PT be the optimal solution value. Recall that for
a given constant & € < 1, a given problem can be approximated within factor
if and only if APP/OPT > ¢, for any problem instance. To prove this result for
the MWCS it is sufficient to make a reduction from the SAT pawblthat works
similarly to the one givenin [9, cf. Theorem 4.1]. By doing s can show that for
a given formulap for SAT, we can build an instand® = (V,E) of the MWCS in
polytime, such that: (i) ifp is a yes-instance, then the optimal MWCS solutioron
has values(1+ €%), and (ii) if @ is a no-instance, then the optimal MWCS solution
onG hasvalue?. 0O

Some applications consider thardinality-constrained MWCSvhere the task is
to find a connected subgraph wkhnodes. Hochbaum and Pathria [14] have shown
that this problem version is NP-hard even if all node weiginésO or 1 and the graph
is either bipartite or planar. For trees and for completetiag DAGs, it is solvable in
polynomial time via dynamic programming [14, 19]. Obseivattfor this problem
version, the node weights can be assumed to be all positidethee maximization
variant and the minimization variant are equivalent. Geitaisidt [13] noted that
no approximation algorithm is known with a factor betterrtl@(K), and such an
algorithm is almost trivial to find. The cardinality-coraimed MWCS (and also the
MWCS) can be solved by translating it into the edge-weighedion, which has
been studied as theMinimum Spanning Tree Problefik-MST) or k-Cardinality
Tree Problemin the literature (see, e.g., [10, 6]).

3 MIP Formulations for the MWCS

In this section we revise three MIP models for the MWCS rdgepresented in the
literature, and propose a novel approach based on the dovfaspde separators in
digraphs.
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The MIP formulations considered in this paper are based enotiservation
that if there is a path betweerand any other node i = (Vr,At), then we will
search for a subgraph which is an arborescence rooted & . In our models,
two types of binary variables will be used to describe a fdasWCS solution
T = (Vr,AT7): binary variablesy; associated to nodés= V will be set to one iff
i € Vr, and additional binary variableg will be set to one iff the nodee V is the
key player, i.e., if it is used as the root of the arborescence

Notation and Preliminaries: A set of verticesSc V (S# 0) and its complement
S=V\Rinduce two directed cut§S,S) = 3" (S) = {(i,j) €Ali€ S j € S} and
(59 =0 (9 ={(i,j) eAli€SjeS}. When there is an ambiguity regarding
the graph in which the directed cut is considered, we will stimes writedg instead
of only o to specify that the cut is considered w.r.t. graphFor a setC C V,
let D~ (C) denote the set of nodes outside®that have ingoing arcs int6, i.e.,
D~ (C)={ieVv\C|3(i,v) e AveC}].

A digraphG is called strongly connected (or simpgtrong if for any two dis-
tinct nodesk and/ fromV, there exists gk, ¢) path inG. A nodei is a cut point in
a strong digrapl@ if there exists a pair of distinct nodé&sand/ from V such that
there is nak,¢) path inG —i.

For two distinct nodek and? fromV, a subset of nodds C V \ {k, ¢} is called
(k,¢) node separatoif and only if after eliminating\ fromV there is nak,¢) path
in G. A separatoN is minimalif N\ {i} is not a(k,¢) separator, for anyc N. Let
A (k,£) denote the family of al(k, ¢) separators. Obviously, #H(k,¢) € Aorif £ is
not reachable fromk, we have 4 (k,¢) = 0. Let .47 = Uyz.# (k,£) be the family
of all node separators with respectita V that we will refer to ag-separators.

For binary variables € {0,1}/Fl, we denote bya(F’) the sumy . & for any
subsefF’ CF.

3.1 The Prize-Collecting Steiner Tree Model

In [8] the authors observed that the MWCS on undirected grépéquivalent to the
Prize-Collecting Steiner Tree Problem (PCStT), in the sdinat there exists a trans-
formation from the MWCS into the PCStT such that each optisaéition of the
PCStT on the transformed graph corresponds to an optimal B\&@Jution from
the original graph. Recall that, given an undirected grdps (V4,En) with non-
negative node weights, and non-negative edge costs the PCStT is the problem
of finding a subtredy of H that maximizes the functioB,cy, By — Yect, Ce, i-€.,
the difference between the collected node prizes and edug. dthe transformation
from the MWCS into the PCStT is given as follows: Given an ingnaphG of the
MWCS we setH := G andw = minyy py (note, thatw < 0). In order to get non-
negative node weights, we ggt:= py—w Vv eV andc; = —w, for alle€ E. This
transformation also works for digraphs, i.e Hifis a digraph, the PCStT consists of
finding a subarborescencetéf{rooted at some nodec V) that maximizes the given
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objective function. The transformation is correct, sinog &easible solution is an
arborescence, which has indegree 1 for every node, and tightteansformations
neutralize each other.

We now present the MIP model proposed in [20] for the PCSLT ithaised
for solving the MWCS after transforming it into the PCStT€48]). Consider a
transformation from a (directed or undirected) PCStT ims¢ainto a rooted digraph
Gq = (Vy,Aq) that works as follows: If the input grapB = (V,E) is undirected,
then we create the arc satby bidirecting each edge. In any case we now have a
directed graphc = (V,A). The vertex se¥y =V U {r} contains the nodes of the
input graphG and an atrtificial rootvertexr. We add new arcs from the rootto
nodesv whose out-degree is non-empty in order to get the ardAgete., Aq =
AU{(r,v) | ve V andd*(v) # 0}. All arc weights are set to the weights of their
undirected counterparts, and the weight of an(ang) € Aq is set tow.

In the graphGy, a subgrapfiy = (VTd,ATd) that forms a directed tree rooted at
r is called arooted Steiner arborescenck is a feasible solution of the PCStT if
the out-degree of the root is equal to one. To model feasitdim& arborescences
in Gq, we will use two types of binary variables: (a) binary vatésy; introduced
above associated to all nodes V, and (b) binary variables;, such thatz; = 1 if
arc(i, j) belongs to a feasible Steiner arborescehcandz; = 0 otherwise, for all
(i,]) € A

The set of constraints that characterizes the set of feasdiutions of the un-
rooted PCStT is given by:

26 (i) =i, YieV\{r} 1)
A5 (9) >y, YSCV\{r} kes @
2(5+(r)) = 1. 3)

Thein-degreeconstraints (1) guarantee that the in-degree of each veftie tree

is equal to one. The directed cut constraints (2) ensurdhieat is a directed path
from the rootr to each costuméesuch thaty = 1. The equality (3) makes sure that
the artificial root is connected to exactly one of the nodésisT the MWCS can be
formulated using the following model that we will denote (BCStT):

max{ 2 (Pv—W)yy + wzj | (y,z)satisfies (1)-(3) (Y,z) € {0, 1}H+Ad} _
ve (i.1)eAg

The (PCStT) model uses node and arc variablgsidz) given that it relies on
an equivalence with the PCStT. However, considering Déjimil it seems more
natural to find a formulation based only in the space ofariables since no arc
costs are involved. In the next section we will discuss sdvaiodels that enable
elimination of arc variables in the MIP models.
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3.2 Model of Backes et al. 2011

Recently, in [1] a new MIP model for the MWCS is introduced ethiavoids the
explicit use of arc variables. L& denote the family of all directed cycles@ The
new model, that we will denote l)CYCLE), reads as follows:

x(V)=1 (4)
X <y, VieV (5)
y(O~ (i) >yi—x, VieV (6)
¥(C)—x(C)-y(D (C)) <[C|-1, ¥Ce¥ @)
(xy) € {0,1}*". (8)

Inequalities (4) make sure that one node is selected as aarmbinequalities (5)
state that if the node is chosen as a root, it has to belongetsdlution. Con-
straints (6) are thén-degree constraints they ensure that for each node which
is not the root, at least one of the incoming neighbors needettaken into the
solution. In a directed acyclic graph, in-degree constsagne sufficient to guaran-
tee connectivity, but in general, imposing only the in-aggconstraints may allow
solutions that consist of several disconnected componéntvoid this, cycle con-
straints (7) are added to guarantee connectivity. Thessti@nts make sure that
whenever all nodes from a cycle are taken in a solution, ame o6 them is set as
the root, at least one of the neighboring nodes flon{C) has to be taken as well.

Observation 1 Constraints(7) are redundant for those €@ ¥ such that GJ
D=(C)=V.

To see this, observe that using the root constraint (4), ybkeconstraints (7) can
be rewritten as follows:

y(€) <y(D™(C)) +[C| - 1+x(C) = y(D™(C)) +|C| - x(D"(C)),

which is always satisfied by the model due to constraintsriilya< 1, foralli € V.

In this model an artificial root nodeis not explicitly introduced. However, it
is not difficult to see that for any feasible MWCS solutionrthés a one-to-one
mapping between variables introduced above and the variablgsfor alli € V.

The following result shows that th€€YCLE model provides very weak upper
bounds, in general.

Lemma 1. Given an instance of the MWCS, let OPT be the value of the aptim
solution, and let UB be the upper bound obtained by solvirgLth relaxation of
the (CYCLE) model. Then, there exist MWCS instances for whicii@IBT € O(n).

Proof. Consider an example given in Fig. 1. The variables of the L&xegion of
the (CYCLE) model are set as follows; = x; = 0 for the nodes with negative
weights;y; = 1/2 andx; = 0 for the nodes in the 2-cycles, and; = y; = 1 for the
node in the center. There &g = (n— 1) /3 € O(n) branches in this graph. We have
UB = KyM + 2M andOPT = 2M, which concludes the proof.0
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Fig. 1 An example showing that the LP bounds of {@¥ CLE) model can be as bad @¢n). The
labels of nodes represent their weighis:> 0 andL >> M.

3.3 A Model Based on (k,¢) Node Separators

We now present an alternative approach to model the MWCSeispplace ofx,y)
variables that relies on the constraints that have beemtlgaesed by [11] and [3]
to model connectivity in the context of sheet metal desighfanest planning, resp.
Notice that for an arbitrary pair of distinct nodés?) in G, if ¢ is taken into the
solution andk is chosen as root, then either (i) there is a direct arc fkam/, or
(i) at least one node from ank, ¢) separatoN € .#'(k, ¢) has to be taken into the
solution. The latter fact can be stated using the followimgpualities that we will
refer to amnode-separator constraints

If the nodesk and/ are connected by an arc, thefi (k,¢) = 0, in which case we
need to consider the in-degree inequalities (6) to makeksgreonnected td. Thus,
we can formulate the unrooted MWCS as

(CUT)ke max{ 2 pwv | (X,y) satisfies (4)-(6), (9) andx,y) € {0, 1}2”} )

Inequalities (9) can be separated in polynomial time in getmraph that splits
nodes into arcs. Given a fractional solutigqyy), for each pair of nodeg, ¢) such
thaty; + X« — 1 > 0 we generate a graby, in which all nodes # k, ¢ are replaced
by arcs. Arc capacities are then set to 1, except for the @scated to nodes,
whose capacities are setyto—"%;. If the maximum flow that can be sent frdato ¢
in Gy is less thary, 4 X« — 1 > 0, we have detected a violated inequality of type (9).

Using the root constraint (4), inequalities (9) can alsodfemmulated as follows:

Y(N) = yr+Xx(NU{k}) =1 = y(N) +x(V\ (NU{k 1})) > yr — X,
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which can be interpreted as follows: If nofls in the solution and it is not the root,
then for eactk € V such that#'(k,¢) # 0 and eaciN € .4'(k, ¢), either one of the
nodes fromN is part of the solution, or none of the nodes frdlu {k} is chosen as
the root node.

Inequalities (9) are quite intuitive, however they are @kl defining. In the next
section we will show how thék, £) node separator constraints can be lifted to obtain
facet defining inequalities.

3.4 A Model Based on Generalized Node Separator |1 nequalities

Observe that the inequality (9) can be lifted as follows:ukse thatN € .4 (k, )
also separates another nodte # k from ¢. Since at most one node can
be set as a root, the right-hand side of (9) can be increaseébliasvs:
Y(N) = X(N) >y, + X+ X¢ — 1. In fact, this motivates us to introduce a generalized
family of node separator inequalities, that can be obtalyealparallel lifting of (9).

Generalized Node-Separator InequalitiesLet ¢ be an arbitrary node iM and let
N € .#; be an arbitrary-separator. LeiMy , be the set of nodessuch that there is
a directed(i, ¢)-path inG — N. More formally:

Wae = {i € VAN |3(i,¢) pathPin G—N}U{/}.

Then, for any feasible MWCS solution, the following has tcshésfied: if nodd is
part of a solution, then either the root of the solution i®4g,, or, otherwise, at least
one of the nodes froMl has to be taken. Hence, the following inequalities, that we
will refer to asgeneralized node-separator inequalitiese valid for the MWCS:

Y(N) +X(Wne) > Yo, VLEV,Ne€ N (gNSep)

Notice that the in-degree inequalities (6) are a subfanfilghSep): The in-degree
inequality can be rewritten g8;cp- (1) Yj +X¢ > Y, i.€., they are a special case of the
generalized node-separator cuts fbe= D~ (¢) in which caséMy . = {¢}. In order

to see that (QNSep) are lifted inequalities (9), notice {gatSep) can be rewritten
as follows:

Y(N) —X(N) >y, +x(V\ (NUWy () —1, VeV, Ne .

Together with this observation this proves that the follogvimodel is a valid MIP
formulation for the MWCS:

(CUT) max{ Z/ pwv | (X,y) satisfies (4)-(5), (gNSep) arfd,y) € {0, 1}2”} )
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Proposition 2 Generalized node-separator inequalities can be separitqubly-
nomial time.

Proof. Consider an auxiliary support graph in which the nodes alitexpas fol-
lows: each nodéc V is replaced by an ar(@,i»). All ingoing arcs intoi are now
connected td;, all outgoing arcs from nodeare now connected tp. In other
words, we create a grajit = (V/,A’) suchthav’ = {i1 |i e V}U{i2|ieV}U{r}

(r is an artificial root) A’ = {(i2, j1) | (i, j) € A}U{(i1,i2) |[i e V}U{(r,i1) |i € V}.

For a given fractional solutiofX, ) arc capacities &’ are defined as:

yi, if u=iy,v=isieV,
cap,=13 %, ifu=rv=ipieV, (20)
1, otherwise

We calculate the maximum flow d® betweerr and(¢1,¢;) in G’ for a node/ such
thatyy > 0. To check whether there are violated inequalities of tgdéSep), it only
remains to show that (i) every minimum @& S) in G’ such that the corresponding
flow is less thary; corresponds to a (gNSep) inequality for the givea V and
someN € .4, or (ii) that a corresponding violated (gNSep) cut can beegated
from (S, S) in polynomial time. Observe that any minimum ¢&S) in G’ which is
smaller thany; can be represented as union of arcs adjacent to the root,pios
of arcs of type(iy,i2). Hence, eackS, S) cut implies the following inequalities:

X+ > Yz (11)
(L)ES(S  (inizfes (9

We can now define a partitionir{® , N,W) of the node se¥ such that:
WZ{I eV | il,iQES}, NZ{i ev | i1¢3i265}, U ZV\(WUN).

Rewriting the inequality (11), we obtai(W) + y(N) > y,. Observe thatl # 0.
Indeed, ifU = 0 thenNUW =V, but then we havg(N) +y(W) >x(V) =1> ¥,
i.e., such cuts will never be violated. Hence, given the pragartition(U,N,W),
the setN is obviously a(k,¢) separator for ank € U (after removing(r,i1) arcs
from G/, the arcqi1,iz) € &~ (S) are arc-separators that sepatatirom the rest of
the graph). IW contains only nodes that can reatim G — N, then inequality (11)
belongs to the (gNSep) family. Otherwise we reverse all er€s— N and perform
a breadth-first search frofm All nodes that can be reached franfnotice that they
cannot belong tdJ), by definition, determine the sk ,. If the original cut (11)
was violated, the new one with the left-hand side equal(h) + x(Wy ) will be
violated as well. O
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3.5 Some More Useful Constraints

In this section we present additional constraints that aeful for practically
solving MWCS instances.

Connected Component Inequalities:ln some applications of the MWCS, k-
cardinality constraint is imposed;.y yi = K. For a given nod& € V, let B contain
all the nodes that are further thKn- 1 hops away frork. In that case, the following
inequalities are valid for the MWCS:

X%+ye <1, VIieR. (12)
Rewriting the connected component cuts, we obtain:

;XJ >y, VCER,
J

these constraints can be further strengthened by downgiftie coefficients of the
left-hand side. Whenever nodes in the solution, then eithéris the root, or the
root cannot be more that— 1 hops away frond. LetW; be the set of such potential
root nodes including. We have

XWp) >y, YleV.

Out-Degree Inequalities: The following set of inequalities state that whenever a
nodei such thatp; < 0 is taken into a solution, this is because it leads us to @&noth
node with positive weights:

y(D*(i)) >y, VieVstp<Oo. (13)
Observe that these constraints are not vali¢-fardinality constraints are imposed.

Symmetry-Breaking Inequalities: In case the input graph is undirected, there ex-
ist many equivalent optimal solutions with different otigtions. In order to break
those symmetries, we can impose the following constraiat thooses the node
with the smallest index to be the root of the subgraph:

X+yi<1, Vi<j. (14)

4 Polyhedral Study

Let & denote the connected subgraph (CS) polytope in the spdgefvariables:

2 =conv{(x,y) € {0,1}?"| (x,y) satisfies (4), (5), (JNSep)
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In this section we compare the proposed MIP formulationis véspect to their qual-
ity of LP bounds and we show that, under certain conditidms newly introduced
generalized node-separator inequalities are facet dgffoirthe CS polytope.

4.1 Theoretical Comparison of MIP Models

Let Z,p(.) denote the polytope of the LP relaxations of the MIP modetsgnted
above obtained by replacing integrality conditions by &;,y; < 1, for alli € V,

and letvip(.) be the optimal LP values of the associated MIP relaxatioosthe
2p(PCStT) polytope, we seProj,) (Zp(PCStT)) = {(x,y) € {0,1}?" | x =

zi and(y,z) € . p(PCStT)}. We can show that:

Proposition 3 We have:

1. Projy ) (2p(PCStT) = Zp(CUT) C Pp(CUTy) and Z.p(CUT) C
2.p(CYCLE.

2. Moreover, there exist MWCS instances such tha{@YCLE /v p(CUT) €
O(n).

3. The polytopes? p(CYCLE and 2 p(CUT,,) are not comparable.

Proof. 1. Projy) (#.p(PCStT)) = Zp(CUT): We first show that
Projiy) (ZLp(PCStT)) C #p(CUT). Let (§,2) be a feasible solution for
the relaxation of thePCStT model, we will show that the solutiofX,y) such
that i = 2Z; belongs to 22 p(CUT). Let £ € V be an arbitrary node such that
Y, > 0, choose soméN € .4; and consider the associat®d,, C V. Let Gy
be the corresponding directed instance of the PCStT withrdlo¢ r (cf. Sec-
tion 3.1). Consider now a cuiVy,Wy) in Gg whereWy = N UW,. We have:
86, (Wa) = {(r,i) € Ag|i € Wy o} URestwhereRest= {(j,i) € Aq | j € Wq,i € N}.
Observe thaRestC dg (N) C Uiendg, (i). Therefore, we have:

y(N) = Zw 2(0g, (1)) = 2(95,(N)) > 2(Res}. (15)

Since(Wy,Wy) is a Steiner cut iGg, it holds thatz(8g, (Wa)) = Ye. This, together
with (15) implies:

Y(N) +X(Wh0) = 2(Res) +X(Wn¢) = 2(0, (Wa)) = Ve

To show that?’| p(CUT) C Proj, (7 p(PCStT)) consider an LP solutiofy,X) €
2. p(CUT). We will construct a solutiony, 2) € &2 p(PCStT) such that/ = § and
%j =X;, Vj € V. On the graplG’ (see Proof of Proposition 2) with arc capacities
of (i1,i2) set toyj for eachi € V, arc capacities dff, j1) set toxj, and capacities set
to 1 for the remaining arcs, we are able to sgndnits of flow from the root to
every/; € V' such thaty; > 0. Let fi‘} denote the amount of flow of commodity
associated witlk; € V’, sent along an ar@, j) € A'. Letf be the minimal feasible
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Fig. 2 An example showing tha#? p(CUTy,) Z Z2.p(CYCLE. The LP solutiory; =ys =ys =1,
y1 =Y2 =Y3=X1 =X = 1/2 is feasible for thé CUT,) model and infeasible fofCYCLE).

multi-commodity flow onG’ (i.e., the effective capacities d& used to route the
flow cannot be reduced without violating the feasibility loiktflow). We now define
the values ofy, 2) as follows:7; = X; ,Vj € V and

~ ma)q(ev fé]l, |,J€V P ~ ~ . .
i = ) . N, )) €A vi=2(0 (1)) ,VieV.
4 {max(ev . i=rjev (i,]) €A ¥i=2(3 (7))

Obviously, the constructed solutigf, 2) is feasible for thé PCStT) model and, due
to the assumption th&tis minimal feasible, it follows that = § andX is equivalent
to 2, which concludes the proof.

2 p(CUT) C 2 p(CYCLE: Let (%,¥) be an arbitrary point fron#? p(CUT).
In order to prove tha(X,y) € Z.p(CYCLE we only need to show that con-
straints (7) are satisfied (recall that in-degree ineguealif{6) are contained
in (gNSep)). Given the Observation 1, it is sufficient to ddascyclesC such that
CuUD~(C) c V. Since for any such cyclé the setD~ (C) defines a separator for
any node’ € C, from constraints (gNSep) we have tlyab“ (C)) +X(C) > ¥,. For
the remaining nodejse C, j # k, we apply the bounds y;. Summing up together
these|C| inequalities, we obtain (7).
2. Consider the example given in Fig. 1 for which {i@¢JT) model finds the opti-
mal solution.
3. The example given in Fig. 1 shows an instance for which fedlution is fea-
sible for the(CYCLE and infeasible for théCUTy,) model. The example given in
Fig. 2 shows an instance for which the LP solution is feaditréhe (CUT,,) and
infeasible for thg CYCLE) model. O

4.2 Facets of the CS Polytope

In this section we establish under which conditions soméefiresented inequali-
ties are facet defining for the CS polytope.

Lemma 2.If G is a strong digraph, then the dimension of the polytapeis
dim(#) =2n-1.

Proof. We will construct the set ofr2feasible, affinely independent solutions as
follows: SinceG is strong, we can find spanning arborescences by choosing each
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i €V as aroot. That way, we build affinely independent solutions. In addition,
considern single node solutions (for eadhe V), in which we havex, =y, =1
and all remaining; =y; = 0, for all j # i. The matrix obtained by merging the
characteristic vectors of these solutions has full rank, 27

Lemma 3. Trivial inequalities x > 0 are facet defining if G is strong and i is not a
cut pointin G.

Proof. Consider a familyZ of spanning arborescences on the\sgt{i} in which
eachj # i is taken once as a root. This is possible bec#uise remains a strong
digraph. There are — 1 such solutions, and they are affinely independent. Add
now to.7 single node solutions, for eaghe V \ {i}. Finally, add to.7 a spanning
arborescence i@ with arootj #i. The matrix associated to incidence vectors from
Z hasfullrank,2a—1. O

Lemma 4. Trivial inequalities y < 1 are facet defining if G is strong.

Proof. Consider a spanning arborescema®oted ai. We will then apply gruning
techniquein order to generata affine independent feasible MWCS solutions. We
start withT in which casey consists of all ones. We iteratively remove one by one
leaves fromT, until we end up with a single root nodeThereby, we generate a
family .7 of n affinely independent solutions. We then add4on — 1 solutions
obtained by choosing a spanning arborescence rootgdatall j £ i. The matrix
associated to incidence vectors frofm has full rank, a—1. O

Notice thaty; > 0 are not facet defining inequalities becayse 0 impliesx = 0.
Similarly, x; < 1 do not define facets af? because they are dominatedh ;.

Lemma 5. Coupling inequalitiesjy> x; are facet defining if G is strong and i is not
a cut point in G.

Proof. Construct a familyZ of n affinely independent solutions by applying prun-
ing to a spanning arborescence rooted Add then to.7” additionaln — 1 arbores-
cences on the s#&t\ {i} in which eachj # i is taken once as a root (this is possible
becausé& — i remains strong). The matrix associated to incidence veftom .7,
has fullrank,2—1. 0O

Proposition 4 Given? €V and Ne .4;, the associate@@NSep)inequality is facet
defining if G is strong, N is a minim@tnode separator and the subgraph induced

by Wq.¢ (Wi ¢| > 2) is strong.

Proof. We prove the result by the indirect method. Eét,N) = {(x,y) € {0,1}?"|
Y(N) +x(Wy,¢) =y, }. Consider a facet defining inequality of the foax+ by > ag.
We will show that if all points irF (¢,N) satisfy

ax+ by = ay, (16)

then (16) is a positive multiple of (gNSep). Consides W, ¢’ # ¢. A path from/ to
¢', completely contained Wy ; and rooted at exists inG (W ¢ is strong) and it is
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a feasible MWCS solution that belongsfo¢, N). Let (x,y?) be the characteristic
vector of this path. A subpath obtained after remowvihigom this path, also rooted
at/, is another feasible solution frof(¢,N), and let(x?,y?) be the corresponding
characteristic vector. We hawax! + by —ax?—by? = 0. Therefore we havig, = 0,
forall ¢/ € W, ¢’ # (. Consider now a nodec U =V \ (NUWy). To show that
by = 0, for allk € U, we distinguish the following cases:
(1) If D~ (k)NU # 0, then there exists an atk’,k), kK € U that builds a feasible
MWCS solutionB from F(¢,N). Also, the single node solutio® = {k'} belongs
to F(¢,N). After subtracting the equations (16) with the substitutbdracteristic
vectors ofB andB’, we obtainb, = 0.
(2) If there exists an ar¢i,k) € A for somei € N, then, consider a path from
i to ¢ that does not crosd UU (suchP exists becausBl is minimal) and a path
P =PuU{(i,k)}, in both of them we sdtas root. BotHP andP’ belong toF (¢,N).
After subtracting the equations (16) with the substitutedracteristic vectors d?
andP’, we obtainb, = 0.
(3) Finally, if there exists an argj,k) € A for somej € Wy ¢, we consider a path
Q from £ to j in Wy, (such path exists becau®g ¢ is strong) and a pat) =
QU {(j,k) }. BothQ and@ belong toF (¢,N). After subtracting the equation (16)
with the substituted characteristic vectors@findQ’, we obtainb, = 0. Hence,
the equation (16) can be rewritten @s+ y;cnuge) biXi = ao. Notice that a single
node solution{k} belongs toF (¢,N), for eachk € U. By plugging the associated
vector into (16), it follows thaty = ag, for all k € U. Consider now two spanning
arborescences iy ¢, one rooted at, the other rooted at arbitrar§f ¢ (this
is possible, becauséy , is strong). After subtracting the equation (16) with the
substituted characteristic vectors of those two arboreses we obtaimy, = a, =
a, forall ¢/ € Wy 4. SinceN € .4; and it is minimal, for eache N there exisk € U
such that there exist a pafth from k to ¢ that crossesl exactly at the node Let P
be a subpath d# fromi to ¢. Both paths belong t6 (¢,N) and after subtracting the
associated equations (16), it follows tlaat= ay, and hencey, = ap, for all i € N.

So far, (16) can be rewritten agx(Wn.¢) + ax(Wh¢) + S ienugi; Biyi = ao. After
plugging in the characteristic vector B into this equation, it follows thasg +
bi + b, = ap, and therefore we havia = —b, = 3, for all i € N. Equation (16)
becomes novegx(Wnr) + ax(Wy ) + BY(N) — By, = ao. Notice that solutior{ ¢}
also belongs td-(¢,N), which implies thatr — 3 = ag. Finally, substitutinggg in
the previous equation, and using the equation X4y,) = 1, we end up with the
following form of (16):

Bl—x(Wn¢) +Y(N) =y, = —1],

which together with equation (4) concludes the prodfl
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5 Computational Results

For testing the computational performance of the presefotedulations we have
considered both directed and undirected MWCS instances(GYCLE model of
Backes et al. [1] has been developed for directed graphsl&igy networks) with
K-cardinality constraints, i.e., any feasible solution teabe comprised by exactly
K nodes (for a giveK > 1). Executables of this implementation are available @nlin
(see [12]). For théPCStT) and (CUT) models we have developed our own B&C
implementations that work with and without cardinality stnaints. The real-world
instances used in [1] requike-cardinality constraints. Therefore, in the part of our
computational study conducted on digraphs, we impose ralityi constraints for
all three models(PCStT), (CUT) and(CYCLE. For the other set of instances we
take the size of the unconstrained optimal solution (oletioy the(CUT) model)
and provide the corresponding valuekofs input to thé CYCLE model.

In the following, we describe (i) components of the desigB&C algorithms
and some implementation details, (ii) a testbed used foexdperiments, and (iii)
an extensive analysis of the obtained results.

5.1 Branch-and-Cut Algorithms

Separation of Inequalities: For the (PCStT) model, connectivity inequalities (2)
are separated within the B&C framework by means of the mawirfiow algorithm
given by [5]. The separation problem is solved on a suppaplgwhose arc capac-
ities are given by the current LP valueo¥ariables. We randomly select a terminal
v € V such thatp, > 0 andy, > 0, and calculate the maximum flow between the
artificial root andv, and insert the corresponding constraint (2), if violated.

For the(CUT) formulation, the separation of (QNSep) is performed by isglv
the maximum flow problems as described in the proof of Prajposk, with arc
capacities given by (10).

In all cases, instead of adding a single violated cut peatik@n, we usaested
back-flomandminimum cardinalitycuts (see also [17, 20]) to add as many violated
cuts as possible. We restrict the number of inserted cutsiwgach separation
callback to 25.

Primal Heuristic: Our primal heuristic finds feasible solutions using the infa-
tion available from the current LP solution in a given nodéhef branch-and-bound
tree. Although we develop two different B&C algorithms, iged from two MIP
models, the embedded primal heuristics are based on the idameWe select a
subset of potential “key-players” (nodes with a positivégming degree and with
sufficiently largey values) and run a restricted breadth-first search (BFS) &ach
of them. Out of the constructed connected componentsféasjble solutions of
the MWCS, we select the one with the largest total weight.
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MIP Initialization: We initialize the(PCStT) model with the root out-degree con-
straints (3). For the undirected MWCS, we also add symmiateyaking constraints
(similar to (14)) and inequalitiegji + z; <y;, for all e: {i,j} € E since they
avoid too frequent calls of the maximum flow procedure. Fer thriants where
no cardinality constraint is defined, we also include the flialance constraints:
z(d~(i)) < z(d*(i)), for alli € V such thatp; < 0. These constraints ensure that a
node with non-positive weight can not be a leaf in an optin@$SH solution.

We initialize the(CUT) model with the constraints (4), (5), (6). For the cases
where no cardinality constraint is imposed, the out-degmestraints (13) are
also included. Finally, the symmetry-breaking constsifit4) are added for the
undirected case.

Implementation: The proposed approaches were implemented using
CPLEX™12.3 and Concert Technology. All CPLEX parameters were set t
their default values, except the following ones: (i) CPLEXswere turned off, (ii)
CPLEX heuristics were turned off, (iii) CPLEX preprocesgsimas turned off, (iv)

the time limit was set to 1800 seconds (except for the ingmfirom [1]), and (v)
higher branching priorities were given tovariables, in the case of th&CStT)
models, and tx variables, in the case of tH€UT) model. All the experiments
were performed on a Intel Core2 Quad 2.33 GHz machine witb GB RAM,
where each run was performed on a single processor.

5.2 Benchmark I nstances

We have considered two sets of benchmark instances arising dpplications in
systems biology and from network design.

System Biology InstancesWe have considered instances used in [8] and [1]. In [8],
only a single protein-protein interaction network is caiesed. The instance is pre-
sented as an undirected graph comprised by 2034 nodesi(sicded 8399 edges
(interactions). The considered protein-protein intécachetwork corresponds to a
well studied human one and the protein scores come from aHgmp microarray
dataset (LYMPH). The instance is available at [21].

In [1], six instances of regulatory networks, i.e., directgraphs, were consid-
ered. These instances have the same underlying network @@ an regulatory
network of protein complexes), which is a graph comprised38%7 nodes and
133310 arcs. The differences between the six benchmarénioss of this set
are the scores associated to the proteins (or protein caeg)levhich depend
on the pathogenic process under consideration. All theaimsts are available
online (see [12]). For providing a valid comparison with timethod proposed
in [1], it is necessary to impose cardinality constraintsthie solutions. Values
K € {10,11,...,25} are considered. This leads to 16 different instances fdr efic
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the six different score settings.

Network Design InstancesThese are Euclidean random instances which are gen-
erated as proposed by Johnson, Minkoff, and Phillips inrtheper on the Prize-
Collecting Steiner Tree Problem [16]. The topology of thiestances is similar to
street networks. First) nodes are randomly located in a unit Euclidean square. A
link between two nodeisandj is established if the Euclidean distart;gbetween
them is no more thao /+/n, for a fixeda > 0.

To generate node weights, we performed the following proced% of the
nodes are randomly selected to be associated with non-zghts. Out of them,
€% are associated with a weight taken uniformly randomly fieri0,0] and the
remaining ones are associated with a weight taken uniforamgiomly from[0, 10].

When generating these instances we do not impose whetksrdie directed or
not. When reading the input files we define if the link betwiesmd j corresponds to
anedge: {i,j} ortoanara: (i, j). This allows us to use the same set of instances
for both, the directed and the undirected case.

For the computational experiments we considened {500,750,100Q 1500},

a € {0.6,1.0}, d € {0.25,0.50,0.75}, € € {0.25,0.50,0.75}. This leads to 18 in-
stances for each fixed value of

5.3 Algorithmic Performance

MWCS on Digraphs: For this study, we consider the instances GSE13671,
GDS1815, HT-29-8, HT-29-24, HT-116-8, HT-116-24 from [Xdaour randomly
generated instances.

In Fig. 3, using the box plots we show the |gevalues of the running times for
the three approaches considering all instances of [1] dnalales ofK. There are
16x 6 =96 problems in total for each approach. The values markddamitasterisk
correspond to the Igg-values of the mean running time (shown as the label next to
the asterisk). The values marked with symbotorrespond to the lgg-values of
the maximum running times (the label next to it shows the nafitke instancek,
and the running time). The obtained results indicate tloathis group of instances,
(PCStT) is the approach with the worst performance since most ofitheing times
are at least one order of magnitude larger than the ones ofltlee two approaches.
When comparingCUT) and(CYCLE), one can observe that the distribution of the
running times of th€ CYCLE) model has a larger dispersion (thexis wider) and
its outliers are almost one order of magnitude larger thanntaximum running
times of the(CUT) model. In a few cases however tfeYCLE model solves some
instances faster than th€UT) model (which can be seen from the minimum values
and the values in the first-quartile). Overall, the mean eafithe running times
of the (CUT) model is 22 sec which is almost three times smaller than thenme
running time of thelCYCLE model (77 sec). The value of the maximum running
time of the(CUT) model is 193 sec which is more than 10 times smaller than the
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Fig. 3 Box plots of log y-values of the running times [sec] (instances from KL {10,...,25}).

maximum running time of théCYCLE) model (2245 sec, reached fir= 18 for
the instance GSE13671, see Fig. 3). The fact that the boxedfGWT) model is
considerably narrower than the box of {{&&Y CLE) model, indicates that the&€UT)
approach is more robust regarding the variation of the soof@rotein complexes
and the value oK.

In Table 1 we report for each instance from [1] the averageeslover all
K € {10,...,25}) of the running times and the average number of cuts added for
each of the(PCStT), (CUT) and (CYCLE models (cf. columns Time(sec), #(2),
#(gNSep) and #(7), respectively). In colurdirwe show the fraction of nodes with
a score different than 0 and in colurarnthe fraction of them with a negative score.
The results indicate that the performance of (6& CLE) model strongly depends
on the instances under consideration (the average runimeg tof GSE13671 are
two orders of magnitude larger that the ones of HT-116-8)clvhlso explains the
dispersion shown in Fig. 3. Likewise, for tiPCStT) model, the average running
time for the instance HT-29-8 is an order of magnitude lathan for the instance
GSE13671. In contrast to the unstable performan¢@6fStT) and(CYCLE mod-
els, the(CUT) model seems to be more independent on the type of considered
instances. From the same table we may conclude that the mahtets needed to
prove the optimality is one order of magnitude smaller f@(fBUT) model than for
the other two models. This means that the (gNSep) cuts are efi@ctive in closing
the gap than the (7) and (2) cuts. Regarddnande, it seems that th€CUT) model
is not sensitive to their values, while ti€ YCLE model performs better whemis
smaller.

For the set of Euclidean network instances, running timethef(CUT) and
(CYCLE model are given in Fig. 4(a) and 4(b), respectively (for marsfances
we reached the time-limit for thEPCStT) model, so we do not consider it here).
This time we group instances according to different comtimna of (3, €) values.
Each box contains 16 8 = 128 values obtained for the settingse {10,...,25},
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n € {500 7501000 1500} anda € {0.6,1.0}. Comparing Fig. 4(a) and 4(b) we
observe that although the average running times (markeld asterisk) of the
(CUT) model are in general one order of magnitude smaller tharetiodghe
(CYCLE model, both of them present a similar pattern: (i) For a giderthe
increase ofe from 0.25 to 0.75 produces a worsening of the algorithmidqer
mance. This worsening is visible not only in the increaseénefrunning times, but
also in their higher dispersion (wider boxes and more agflidncreasing (for

a fixed d), means that a larger proportion of nodes has a negativehtyesoce
our goal is to find a connected component of exaktlgyodes the more nodes with
negative weight, the more difficult is the task of reaching thttractive” nodes
that lead to a better solution. (ii) On the other hand, insiregd from 0.25 to 0.75
produces an improvement of the algorithmic performanee, the more nodes
with non-zero weights, the easier the problems. One pessiialson for this could
be the symmetries induced by a large portion of nodes with megight (as it is
the case fo®d = 0.25). Hence, by decreasing this portion (i.e., increagihghe
cutting-planes that are added through the separation kecoaone effective, and
the primal heuristic is able to find more diverse, and evdiytbetter, incumbent
solutions.

MWCS on Undirected Graphs: For this computational comparison we do not im-
pose cardinality constraints. In order to be able to perfarcomparison with the
(CYCLE model that requires a digragghandK as its input, we run théCYCLE
model with (i) G transformed into a digraph, and (ii) with the valuekoket to be
the size of the optimal unconstrained MWCS solution (olediby, e.g., th¢CUT)
model). For these graphs we impose a time limit of 1800 sexdfid. 5 shows the
performance profile of the three approaches regarding thertmning time. Fig. 6
shows the performance profile of the achieved gaps withstthie limit. We ob-
serve that also in the case of undirected graphs(@éT) approach significantly
outperforms thé CYCLE and the(PCStT) approach: While th¢ CUT) approach
produces solutions of less than 1% of gap in almost 100% ofri&nces, the
(PCStT) approach produces solutions with more than 15% of gap in thare40%
of the instances. Th@€CYCLE) approach solves about 50% of instances to optimal-
ity, with most of the gaps of the unsolved instances beingwé5%.

In Table 2 we provide more details on these results. Each mwesponds to
a fixed value ofn, with 18 different instances obtained by varyidg ¢ and a.
Column #NOpt indicates how many out of those 18 instanceg wet solved to
optimality within the imposed time limit of 1800 secondsr Bayivenn, and for each
of the three approaches we additionally report on the faligwalues: the average
running time (cf. column Time(sec)); the average gap oféhastances that were
not solved to optimality (cf. column Gap(%)), and the averagmber of inserted
cutting planes (cf. columns #(2), #(gNSep), #(7), respebt). These results show
that the(CUT) model is by far more effective than tH€YCLE model for this
group of instances. The average running times of(@E&T) model are one order
of magnitude smaller than those of tfRRCStT) and (CYCLE model. All but four
instances can be solved by tt@UT) model to optimality, while in the case of the
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Fig. 4 Dependance of the running times on tlde¢) settings.

(CYCLE and(PCStT) model, 29 and 42 instances remain unsolved, respectively.
The number of cutting planes of type (gNSep) needed to clesgap is one order
magnitude smaller than the number of cuts of type (7) or (2).

So far, it seems clear that for the considered instance$GhH’) model sig-
nificantly outperforms th€ PCStT) approach. However for the LYMPH instance
studied in [8], for whichd = 1.0 ande = 0.97, the(PCStT) model takes only 3.19
seconds to find the optimal solution while tf@YCLE) model takes 15.56 seconds,
and the(CUT) model 50.70 seconds. The optimal solution, whose objegtilige
is 70.2, is comprised by 37 nodes with positive weight andt wegative weight.

It is not easy to derive a concrete answer of why, for thisipaldr instance, the
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Fig. 5 Performance profile of running times on random undirectsthinces.
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Fig. 6 Performance profile of final gaps (%) on random undirectethimtges.

(PCStT) model is faster than th@CUT) model. The following two factors could be
responsible for this behavior: (i) the sparsity of the gréthb number of edges is ap-
proximately four times the number of nodes, while in randaostances this ratio is
almost 10) which means that the number ofriables is not too large, and (ii) there
are significantly less symmetries due to the fact that thexena nodes with zero
weight. These factors might explain why, in this particidase, it becomes easier
to solve the problem with the prize-collecting Steiner trefermulation, rather than
directly looking for a connected component that maximinesdbjective function.
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6 Conclusion

Our work was motivated by the wide range of applications ef MWCS and a
recent work of Backes et al. [1] who were the first ones to pseps MIP model
for the MWCS derived on the set of node variables only. In gfaper we were
able to provide a tight MIP model that outperforms the modetrf [1] both the-
oretically and computationally. The new model also workstlom space of node
variables and is valid for all previously studied variantste MWCS (cardinality
constrained, budget constrained and undirected/diresteyl We have studied the
CS polytope and we have shown that the newly introduced Yaafibeneralized
node-separator inequalities is facet defining. Our comjoutal study has shown
that the new approach outperforms the previously proposesd,an particular if the
inputs are digraphs with non-empty subsets of zero-weigtés.
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Table 1 Average values for instances from [K € {10,...,25}).

(PCst) (CUT) (CYCLB

Instance o £ Time(sec) #(2) Time(sec) #(gNSep) Time(sec) #(7)
GSE13671 0.89 0.73 176.11 1206 17.85 97 34195 3754
GDS1815 0.92 0.64 878.63 3565 46.09 225 37.95 1264
HT-29-8 0.92 0.66 2846.36 5400 22.03 182 14.17 178
HT-29-24 0.92 0.61 196.56 1292 11.40 61 60.59 1330
HT-116-8 0.92 0.54 623.10 2214 15.26 108 3.21 129
HT-116-24 0.92 0.55 237.78 1149 19.82 93 4.19 130

Average 826.42 2471 22.07 128 77.01 1131

Table 2 Average values for different values o{random instancesy € {0.6,1.0}, J, € € {0.25,0.50,0.75}, 18 problems per eaat).

(PCStY (CUm (CYCLB
#nodes #arcs Time(sec) Gap(%) #(2) #NOpt Time(sec) Gap(%) #(gNSep) #NOfime(sec) Gap(%) #(7) #NOpt
500 4558 677.24 >15.00 1055 5 15.30 - 69 0 615.36 5.50 4289 6

750 7021 1243.57>15.00 1552 11 108.78 1.27 99 1 471.68 2.64 1721 4
1000 9108 1304.76>15.00 1955 12 150.03 0.29 201 1 990.84 6.76 3176 9
1500 14095 1526.41>15.00 2021 14 453.82 2.08 373 2 1086.19 10.55 2139 10
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