A Branch-and-Cut-and-Price Algorithm for

Vertex-Biconnectivity Augmentation

Ivana Ljubic¢*

Faculty of Business, Economics and Statistics
University of Vienna
Briinnerstr. 72, 1210 Vienna, Austria

ivana.ljubicQunivie.ac.at

Abstract. In this paper, the first approach for solving the vertex-biconnectivity aug-
mentation problem (V2AUG) to optimality is proposed. Given a spanning subgraph of
an edge-weighted graph, we search for the cheapest subset of edges to augment it in or-
der to make it vertex-biconnected. The problem is reduced to the augmentation of the
corresponding block-cut tree [16] whose connectivity properties are exploited to develop
two minimum-cut-based ILP formulations: a directed and an undirected one. In contrast
to the recently obtained result for the more general vertex-biconnected Steiner network
problem [2], our theoretical comparison shows that orienting the undirected graph does
not help in improving the quality of lower bounds. Hence, starting from the undirected cut
formulation, we develop a branch-and-cut-and-price algorithm (BCP) which represents the
first exact approach to V2AUG. Our computational experiments show the practical feasi-
bility of the BCP: Complete graphs with more than 400 nodes can be solved to provable
optimality. Furthermore, the BCP is even faster than the state-of-the-art metaheuristics
and approximation algorithms, as far as graphs with up to 200 nodes are considered. For
large graphs with more than 2000 vertices, optimality gaps that are strictly below 2% are

reported.

1 The Vertex-Biconnectivity Augmentation Problem

In the design of modern telecommunication networks, in particular in backbones, survivability is
an important issue. In many telecommunication applications it is not acceptable that the failure
of a single service node—a multiplexer, switch, or router, for example—leads to a disconnection
of other nodes. Redundant connections need to be established to provide alternative routes in

case of a temporary malfunction of any one node.

* Supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation (FWF)

2 Ivana Ljubi¢

This kind of redundancy of a network is described in graph theory by means of vertez connectivity.
A network is said to be k-vertex connected, k > 2, if for every pair of distinct, non-adjacent
vertices u and v, there are at least k vertex-disjoint paths (except for u and v) connecting them.
Throughout the paper, the terms: graphs and networks, vertices and nodes, edges and links, are

used interchangeably.

In the weighted vertez-biconnectivity augmentation problem for graphs (V2AUG), a spanning
but not vertex-biconnected network is given. Thus, the removal of a vertex may disconnect the
network into unconnected components. We say that we cover a vertex when we add some links
to ensure that the removal of this vertex no longer disconnects the network. The global aim is

to identify a set of additional links at minimum total cost in order to cover all vertices.

Formally, the problem is defined as follows.

Definition 1. [Weighted Vertex-Biconnectivity Augmentation, V2AUG]

Let G = (V,E), E C (‘2/), be a vertex-biconnected, undirected graph. FEach edge e € E has
associated costs c. > 0. A connected, spanning, but not vertex-biconnected subgraph Go = (V, Ey),
with Ey C E represents an existing spanning subgraph, and E, = E \ Ey is the set of edges that

may be used for augmentation. The objective is to determine a subset of such candidate edges

E! C E, so that the augmented graph G’ = (V, Eqg U E!) is vertez-biconnected and the function

(B) =Y (1)

ecE/,

s minimized.

In this paper we will refer to the problem briefly as vertex-biconnectivity augmentation (V2AUG).
Furthermore, we will often refer to vertex-biconnectivity simply as biconnectivity, whenever it is

clear from context.

Eswaran and Tarjan [5] were the first to investigate V2AUG. Using a reduction from the Hamil-
tonian circuit problem, they proved that the decision problem associated with V2AUG is NP-
complete. An exact polynomial-time algorithm that runs in O(|V| + |E|) time could be found
for the special case when G has unit edge costs [11]. The best approximation ratio of 2 has
been achieved by Khuller & Thurimella [16], see also Khuller et al. [15]. A genetic algorithm was
given in [17] and has later been improved by Ljubi¢ & Raidl [18] by incorporating advanced local
search and preprocessing techniques. In this paper, we will refer to this latter memetic algorithm

as MA.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 3

A lot of work has been done on the related edge-biconnectivity augmentation problem (E2AUG),
a thorough review of which can be found in a recent work of Bang-Jensen et al. [1]. As this is the
case in many problems related to the graph biconnectivity, an application of algorithms developed
for the edge-biconnectivity does not lead to appropriate solutions for the vertex-biconnectivity.
In particular, Bang-Jensen et al. [1] model E2AUG using a compact ILP model based on the
set covering formulation. The corresponding set covering ILP model for V2AUG would not be
compact anymore, but would involve an exponential number of variables. For solving such a

model, one might need to develop a sophisticated column generation algorithm.

Our Contribution. As our exact approach relies on the augmentation of the block-cut tree,

which does not apply to E2AUG, the paper is focused on the vertex-biconnectivity. In Section 2,
the connectivity properties of that tree are studied and used to develop two minimum-cut-based
integer linear programming (ILP) formulations of the problem: a directed and an undirected
one. The former works on the undirected block-cut graph, the latter uses a new orientation-
based characterization of the block-cut graph. This characterization is an extension of the general
orientability property for biconnected graphs recently proposed by Chimani et al. [3]. The main
(and surprising) result of this theoretical part of the paper is the proof that the orientation
based model of the augmented block-cut tree does not lead to stronger lower bounds than the

undirected one.

Therefore, starting from the undirected-cut model, we develop a branch-and-cut (BC) algorithm
whose main properties are given in Section 3.1. The main contribution of the practical part of the
paper is the integration of sparse and reserve graph pricing techniques into BC that are described
in detail in Section 3.2. A detailed computational analysis of the influence of pricing combined
with the BC is given in Section 4. We show that, among pricing, another two important features
significantly improve the performance of the BC algorithm: a) the primal heuristics, and b) the
initialization with high-quality upper bounds obtained after running a metaheuristic described

in [18].

This is the first exact algorithm for solving V2AUG. Our branch-and-cut-and-price (BCP) algo-
rithm is even faster than the state-of-the-art metaheuristics and approximation algorithms, as
far as graphs with up to 200 nodes are considered. Complete graphs with more than 400 nodes
are solved to provable optimality. For very large networks (with more than 2000 nodes) we obtain

lower bounds that are no more than 2% below the best known feasible solutions.

4 Ivana Ljubi¢

The Block-Cut Graph. [5,10] All maximal subgraphs of a graph Gy that are vertex-

biconnected, i.e., its vertez-biconnected components, are referred to as blocks. As we assume
that the graph Gy is not vertex-biconnected, there will be at least two blocks in Gg. Any two
blocks of Gy share at most a single vertex, which we call a cut-point—the removal of a cut-point
disconnects Gy into several connected components. A block-cut tree T = (Vp, Er), with vertex
set Vp and edge set Ep, is an undirected tree that reflects the relations between blocks and
cut-points of graph Gy in a simpler way [10, 5]. Figure 1(b) illustrates this. The vertices of the
block-cut tree T' = (Vp, Er) are partitioned into the sets of cut- and block-vertices, Vo C Vp

and Vg C Vr, respectively.

© {11}
{7.8,9} & 12 {13
4 10
© 3
{14}
©
{5.6}
Ey @ cut-points (7 blocks @ block-nodes @ cut-nodes
(a) (b)

----- superimposed augmentation edges (E’,)

()

Fig. 1. (a) A connected, but not vertex-biconnected graph Go = (V, Fo); (b) The corresponding block-cut
tree T' = (Vr, E1); (c) A feasible augmentation: the block-cut graph G5 = (Vr, Er U EY).

A block-vertex is associated with all vertices of the represented block in Gy excluding cut-points.
A cut-vertex v. € Vo and a block-vertex v, € Vp are connected by an undirected edge {ve,vp}
in Fp if and only if the cut-point corresponding to v. in Gy is part of the block represented by
vp. Obviously, the resulting structure is always a tree. The computational effort for deriving the

block-cut graph is O(|V| + |E|).

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 5

In contrast to the above definition of the block-cut tree according to [10,5], we now apply the
following simplification: Block-vertices representing blocks that consist of exactly two cut-points
are redundant in our approach and are therefore removed; a new edge directly connecting the
two adjacent cut-vertices is included instead. In Figure 1(b), the block-vertex labelled “{}” is an

example.

Superimposing and Backmapping Augmentation Edges. [7,14] After the block-cut tree

T has been derived from graph Gy, all augmentation edges in F, are superimposed on T as
follows: For each edge {u,v} € E,, a corresponding edge {u’,v'} is created with v/, v’ € V being
the vertices that are associated with v and v, respectively; edge costs are adopted, i.e. cyryr = Cyyp-
From the such obtained augmented graph we finally obtain a simple graph, the block-cut graph
Gpc = (Vr,ErUE,), ErUE, C (V?T), by deleting self-loops and multiple augmentation edges.
In order to be finally able to derive the original edges E! C E, corresponding to a solution
E', C E4 identified on the block-cut graph, it is necessary to maintain a back-mapping from E 4

to F,.

Preprocessing. We can iteratively apply the following basic preprocessing steps to the graph

Gpe = (Vr, Ep U Ey): edge-elimination, fixing of augmentation edges, and shrinking of bicon-
nected components, as described in [18], until we end up with a block-cut tree that needs to be

augmented in optimal way.

Connectivity Properties of the Augmented Block-Cut Tree. Before we describe the ILP

formulation for augmenting the block-cut tree, we need to study its connectivity properties.

Definition 2. Let Gy = (V, L), |Vn| > 3, be a connected undirected graph with a given set of
vertices) # C C V. We say that Gy is C-vertex-biconnected if and only if the removal of any

single vertex ¢ € C does not disconnect Gy .

Denote with V[P] the set of vertices of a path P.

Definition 3. For two distinct vertices x,y € Vn and two simple paths Py and P> connecting
them in Gy, we say that Py and Py are C-vertex-disjoint if and only if (V[P|NV[P]NC) =
{z,y}.

The following generalization of Menger’s theorem for the C-biconnectivity case holds:

6 Ivana Ljubié

Proposition 1. An edge-biconnected undirected graph Gy = (Vn,L), |Vn| > 3, is C-vertex-
biconnected if and only if every pair of distinct vertices x,y € Vi is connected by at least two

C-vertez-disjoint paths.

Our goal will be to augment the block-cut tree at minimum cost so that it becomes Vo-vertex-

biconnected.

Definition 4. A subset E'y C E4 is called a feasible augmentation of Gy = (V, Ey), or just a
feasible augmentation, if after back-mapping of E'y, we obtain a subset E), C E, such that the
graph G' = (V, Ey U E),) is vertex-biconnected.

The following proposition shows that the problem of augmenting the graph Gy = (V, Ep) is
equivalent to the problem of augmenting the block-cut tree T' = (V, Er) using augmentation

edges of the block-cut graph E4.

Proposition 2. Let Gz = (Vr, Er U E) be the graph assigned with a subset of augmentation
edges E'y C E 4. Denote with E), the set of augmentation edges of G obtained after back-mapping
E',, and with G' the corresponding augmented graph G' = (V, Ey U E!). Then:

1. G’ is vertez-biconnected if and only G’ is Vo -vertez-biconnected.

2. If E'; is a feasible augmentation of the block-cut tree T then G’y is edge-biconnected but not

necessarily verter-biconnected.

2 Minimum-Cut-Based ILP Formulations

The most effective ILP formulations related to edge/vertex biconnectivity network design prob-
lems use an exponential number of constraints and therefore rely on the cutting plane and/or
the branch-and-cut methods. Polyhedral structures related to the biconnectivity property are ex-
plored in various papers [9, 6,27, 20]. It has been recently reported in [2, 3] that a BC algorithm
has solved instances of the {0, 1,2}-survivable network design problem with several thousands
of nodes to provable optimality. Hence, the use of the cutting plane framework is a natural ap-
proach for solving V2AUG. Our exact algorithm searches for the optimal augmentation of the
reduced block-cut graph as described above. In this section we give two minimum-cut-based ILP
formulations, an undirected and a directed one, and show that they both provide lower bounds

of the same quality.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 7

2.1 An Undirected Minimum-Cut-Based ILP Formulation

Let E', C E4 be a feasible augmentation. According to the Definition 4, every feasible solution
of V2AUG can be represented by a characteristic vector x:

1, fec F)

Te = Vee Ey .

0, otherwise
We establish an one-to-one correspondence between the variables x. and augmentation edges
e € E4 and therefore we use the terms edge and wvariable of the integer programming formula-
tion interchangeably. We also consider the notions cutting planes (or cuts) and inequalities (or
constraints or requirements) as equivalent. For a subset of nodes W C V| we denote the edges of
the cut induced by the set W belonging to E4 U Er, E4 and Er, with §(W), §4 (W) and dp (W),

respectively, i.e.:
SW)={e={i,j} e EAUEr |ieW, jeVr\W}, &) =74{v}),

SA(W)=6W)NEs ,and d7(W) = 6(W)n Er.

Furthermore, for a node v € Vi, let da— (W) = 54 (W) \ §(v) and dp—, (W) = dp(W) \ 6(v). For
any subset D C Ea, let (D) = > . Te-

Following Proposition 2, an edge set E’, that augments the block-cut tree T represents a valid
vertex-biconnected solution if and only if all cut-vertices in T are covered. This leads to the

following ILP formulation of the problem:

UCuT: min ZeeEA Ce " Te (2)
2(6a_o(W)) > 1 YoeVo YW: 0#W CVr—v, or_(W)=10(3)

. € {0,1} Ve € E4 (4)

We refer to (3) as cut-vertex-connectivity requirements—they ensure Vo-vertex-biconnectivity of
the augmented graph G5 = (Vr, Er U E/;). In other words, those constraints ensure that a
removal of any cut-vertex v € V¢ leaves the augmented graph G’z —v = (Vp \ {v}, (Er U E)) \

0(v)) connected.

The following lemma is a corollary of Proposition 2.

Lemma 1. An optimal solution for UCUT gives an optimal solution to the corresponding

V2AUG problem.

8 Ivana Ljubié

Although redundant for the ILP formulation (see Proposition 1) and even for the LP-
relaxation (see Lemma 2), one might consider the edge-connectivity constraints that ensure edge-

biconnectivity of the augmented block-cut graph.

z(0a(W)) >1, VYW : 0#W CVp, [op(W)| =1 (5)

Our computational study has shown that separating these inequalities in the first step, and asking

for V-vertex-biconnectivity of Gp¢ in the second step, significantly speeds up the computation.

In the following, let Py oyt be the polytope corresponding to the UCUT LP-relaxation, i.e., Pycut

contains all points feasible for UCuUT disregarding the integer properties of the variables:
Pucut = {x € [0, 1]|EA‘ | = satisfies (3)}. (6)

Lemma 2. The edge-connectivity inequalities (5) are induced by the cut-vertez-connectivity in-

equalities (3), i.e. they do not strengthen the LP-relaxation of UCUT.

Proof. Let 2’ be a feasible solution of the LP-relaxation of UCUT, i.e., 2’ € Pycu:. Assume that

2’ does not satisty (5), i.e. that there is a subset () # W’ C Vr such that
2 (5a(W')) <1 and |60 (W')| = 1. (7)

Denote with ¢ = {u/,v'} € Er the edge €’ such that o7 (W’) = {e’}. By construction of the
block-cut tree T, at least one of the end-vertices v’ and v’ is a cut-vertex, say v’. In that case,

07—y (W’') = 0 and inequality (3) holds, i.e. :
2(0a(W') =2 2(0a-v (W) 2 1,

which is a contradiction to (7). O

2.2 A Directed Minimum-Cut-Based ILP Formulation

For several vertex-biconnected Steiner network problems, directed minimum-cut-based ILP for-
mulations obtain stronger lower bounds than their undirected counterparts [3]. The formulations
rely on certain orientation properties of an undirected biconnected graph. An orientation of an
undirected graph Gy = (Vy, L) is a directed graph G, = (Vi, AL) obtained by uniquely direct-
ing each edge from G y. Robbins [26] has shown that for any graph G there exists an orientation
of G with the following property: for every pair of nodes that is edge-biconnected in G, there

exist two directed paths (v +— v) and (v — u) in G’y.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 9

Recently, Chimani et al. [2, 3] gave a new orientation-based characterization of vertex-biconnected

graphs:

Theorem 1. [Chimani et al., 2008] An undirected graph Gy = (V, L) is vertex-biconnected
if and only if for an arbitrarily chosen root r € Vi there exists an orientation of Gn with
outdeg(r) = 1 such that, for each v € Vi,v # r, there are two directed paths (r — v) and

(v r) that are vertez-disjoint except for r and v.
We now show that the following extension of Theorem 1 holds:

Theorem 2. [Extension of Theorem 1 to C-biconnectedness] Given an wundirected edge-
biconnected graph Gy = (V, L) with a set of vertices § # C C V. The following statements

are equivalent:
1. Gy is C-vertex-biconnected.

2. For an arbitrarily chosen root r € C there exists an orientation of G with outdeg(r) = 1
such that, for each v € Viy,v # r, there are two directed paths (r — v) and (v r) that are

C-vertex-disjoint except for r and v.

3. For an arbitrarily chosen root r € Vi \C there ezists an orientation of Gy such that, for each
v € Viv,v # r, there are two directed paths (r +— v) and (v — r) that are C-vertex-disjoint

except for r and v.

Proof. 1.=-2.: Assume that Gy is C-vertex-biconnected and that r is an arbitrary node from
C. We now show how to orient Gy appropriately. First, the maximal biconnected component,
B,. containing r is detected. Note that there is only one such component, because r € C' and
Gy is C-vertex-biconnected. Using the result of Theorem 1, the vertices of B, are labeled
as visited and B, is oriented so that outdeg(r) = 1 and for each v € B,,v # r, there are
two directed paths (r — v) and (v — r) that are (C-) vertex-disjoint except for r and v.
Since G is edge-biconnected, there still might exist several non-oriented vertex-biconnected
components in G . An arbitrary block B is called an augmenting block iff exactly one of its
vertices is labeled as visited. Obviously, in every iteration there exists at least one augmenting
block, and, since the graph is edge-biconnected, there are no trivial blocks. We can orient
every augmenting block, starting from its labeled vertex, say v;, as a root. Obviously, v; € C,
since it is a cut-point of G . By orienting the augmenting block B starting with v; as a root,
we ensure that for every node a € B there are vertex-disjoint paths (v; — a) and (a — v;)

such that outdeg(v;) = 1. Assuming that B and B, share the common cut-node v, for any

10 Ivana Ljubié

a € B we get two oriented paths (1 +— a) and (a — r) that are C-vertex-disjoint and obtained
by concatenating paths (r — v;) + (v; — a) and (a — v;) + (v; — 1), respectively. Repeating

this procedure, we construct the appropriate orientation without changing the degree of r.

2. = 1.: Assume that there exists a cut-vertex v. € C and that there are at least two non-trivial
blocks By and Bs containing v.. Now take the appropriate orientation for v. set as a root.
Since out-degree of v, is equal to one, assume that this outgoing arc leads towards B;. But
then, for all the nodes from v € Ba, v # r, there will be no directed path (r — v) which is a

contradiction.

1. = 3.: We choose a root r € Viy \ C, label r as visited, and iteratively orient all augmenting
blocks in G . It is obvious that the obtained orientation ensures the existence of C-vertex-
disjoint directed paths (r — v) and (v —) for all v € Vi, v # r. Thereby, the out-degree of

r will be equal to the number of blocks r is adjacent to.

3. = 1.: Assume that Gy is not C-vertex-biconnected. It is easy to see that there will be at
least one block B; with maybe several cut-points, but exactly one cut-point ¢ € C. The
cut-vertex c is adjacent to at least one more non-trivial block By, By # Bs. Take the node
v, € By N (Vy \ C) (observe that there always exists one since Gy is edge-biconnected,
i.e. By is non-trivial). Consider the appropriate orientation for v, chosen as a root. This
orientation ensures the existance of two directed C-vertex disjoint paths between v,, and any

node v € By, which is a contradiction with ¢ being a cut node in Gy.

In order to define a directed minimum-cut-based ILP formulation for V2AUG, we first transform
the block-cut graph G p¢ into the bidirected graph G pc with arc sets Ar and A, corresponding
to Er and Eg, respectively, with arc weights ¢;; = ¢j; = c.,Ve = {i,j} € Ea. The problem of
searching for the corresponding feasible augmentation of the block-cut tree Gz~ = (Vp, EpUE',)
at minimum cost can then be reformulated as the problem of searching for a feasible orientation

of the bidirected block-cut graph G’y = (Vp, Ar U A"), A’ C A, at minimum cost.

Since the feasible augmentation leads to a block-cut graph which is edge-biconnected, but not
necessarily vertex-biconnected, there might be several vertex-biconnected components to which
a block-vertex v, € Vr is adjacent to. Hence, by choosing an arbitrary block-vertex v, to be the

root r, we do not need to take care of the corresponding out-degree constraint as in Theorem 1.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 11

As a corollary of Theorem 2 and Proposition 2, in the case of the augmented graph G’ =
(V, EgUE!) and the corresponding augmented block-cut tree G’z = (Vr, EpUE',), the following

theorem holds:

Theorem 3. The graph G’ is vertex-biconnected if and only if for an arbitrarily chosen root
r € Vp there exists an orientation of G’z such that, for each v € Vp,v # r, there are two

directed paths (r+— v) and (v — r) in Gz that are Vo -vertez-disjoint except for r and v.

Proof. Assume that G’ is vertex biconnected. According to Proposition 2, it follows that the
corresponding augmented block-cut graph G’z is Vo-vertex-biconnected. But then, using The-

orem 2, we can find the orientation of G'5 with desired properties.

Conversely, if for any r € Vp there exists such an orientation, according to Theorem 2, the
graph G'5 is vertex-biconnected with respect to Vi \ Vg = Vi, which further implies that G’ is

vertex-biconnected. O

To model the solution G’z we use variables z,, € {0,1}, V(v,w) € A7 U A. Without loss of
generality, we choose 7 to be a leaf of T'. Furthermore, for all S,) # S C Vr we use the following

notation:
5_(5) = {(17]) € ATUA | i ¢ Sa.] € S} 5+(S) - {(7’)]) € ATUA | (S Sv] g_i,S’},
and for all v € Vi, and VS, 0 # S C Vr \ {v} we define:

5= (S)=06"(S)\ (6T(v)Us(v)) and &%

() G (8) =58\ (6F () US (v)).

For any D C Ap U A, let z2(D) = > zi;. The ILP formulation based on directed cuts [3]

ijED

reads then as follows:

DCur : min Z Cij Zij (8)
(i.d)€A
zij + 2 = 1 v{i,j} € Er (9)
zij+ 2 <1 V{i,j} € Ex (10)
z(67(5)) > 1 VO #SCVr\{r} (11)
2(6%(9)) = 1 VO #SCVr\{r} (12)
205, (S1)) +2(65, _(82) =1 YoeVe,Y0#8:,5 CVr\{rv} (13)
zi; € {0,1} V(i,j) € Ay UA (14)

12 Ivana Ljubi¢

Equalities (9) ensure that arcs of the block-cut tree are included in the solution, whereas with (10)
we model directed augmentation arcs. With inequalities (11) and (12) we ensure the edge-
biconnectivity of the solution, i.e., that there are directed paths r» — v and v — 7, respectively, for
any node v € V. Finally, cut-vertex-disjointness requirements (13) ensure Vg -vertex-disjointness

of these two paths, for every v € Vi \ {r}.

Lemma 3. An optimal solution for DCUT gives an optimal solution for the corresponding

V2AUG problem.

We now show that the ILP model based on undirected cuts is equally strong as the directed one.

For that purpose, let us define:
Pocut = {z € [0, 147941 | 2 satisfies (9)-(13)}.
Theorem 4. DCUT and UCUT formulations are equally strong, i.e.:
Proj,(Ppcut) = Pucut,
where Proj, (Ppcut) = {z € [0,1]P4l | 2 € Ppous, ij = zij + 2ji, V{i,j} € Ea}.

Proof. We prove the equality by showing the mutual inclusion:

Proj,(Ppcut) C Pucut: Obviously, every directed LP-solution 2’ is projected into the undirected

solution 2’ such that it satisfies conditions of Py cuys-

Pucut € Proj,(Ppcut): Consider a solution ' € Pyey: and set zl’j = zgz = %xgj, {i,j} € Ea,

and zj; = 2}, = 2, {i,j} € Er. Assume now that the so constructed solution z’ violates one
of the edge-biconnectivity constraints (11) (or, equivalently, (12)). Then, there exists a set
5" C V\ {r} such that z'(6~(S’)) < 1. From Lemma 2 and (5) we know that 1a/(5(5")) =

2'(67(5”)) > 1 which leads to a contradiction.

Assume finally that there exists a cut-vertex v’ € Vo and two subsets 57,55 C Vi \ {r,v'}

such that 2’ violates vertex-biconnectivity constraints (13), i.e. such that:

S5, (S +26h (S < 1. (15)
If S1 =S5 or S; = Vr \ S5, we immediately get a contradiction with undirected cut-vertex-
disjointness constraints (3). Therefore, assume that S| # S5 and S} # Vi \ S5. Since Erp is
a spanning tree, for every set S C Vp, we know that |0(S) N Ex| > 1. Obviously, there must
exist two edges e; = {v, w1} € §(S7) N Er and and ez = {vg,we} € §(S4) N Er such that

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 13

€1 # ey. Assuming that v’ & {v1, w1, va, wa} automatically leads to a contradiction, because

then e € 0g,o—v (S1) N Er, and ez € g, —v (S5) N Ep, and due to (3):

_ _ 1
205, (50) 2 20, (S) N Ar) > L. (16)
and
1
z/((SEBc_v, (S%)) > Z’(éEBc_U,(Sé) NAr) > 3 (17)

So let v/ = v;. Observe that after removing v’ from Gpc (and Gpc), (17) still holds. If

|0 sc—v (S1) N Er| =0, due to (3) we have:
_ 1
ZI((SC_;B(;—U’ (Si)) = §xl(6GBC*vl (Si)) Z

If, otherwise, [0G o —v (S1) N Ep| > 1, then (16) holds too, which finally concludes the proof.

N | =

O

Theorem 4 confirms our choice of taking the undirected cut-based model as basis for the devel-
opment, of the BCP algorithm: UCuUT has less variables and less constraints, thereby providing

lower bounds of the same quality as DCUT.

We have to point out that one can derive a compact ILP formulation for V2AUG based on multi-
commodity flows on directed graphs, called DFLOW, in a similar way as in [3]. However, since the
formulations DCUT and DFLOW are equally strong in general [3], it follows that DFLOW cannot
improve the quality of lower bounds of UCUT either. Furthermore, we know that flow-based
formulations are computationally inferior to cut-based models (see [3]), which is an additional

argument, for modelling V2AUG with UCuT.

3 A Branch-and-Cut-and-Price Algorithm for the V2AUG

Within this section we first propose a branch-and-cut (BC) algorithm for UCuUT based on classical
separation of cut-vertex- and edge-connectivity-inequalities. We then show how to extend the BC
approach with a column generation method. To initialize upper bounds we use values derived
from a metaheuristic framework [18]. An efficient LP-rounding heuristic extended with a local

improvement method is presented, as well.

3.1 Ingredients of the Branch-and-Cut Approach

Based on our UCuT formulation, we have developed and implemented a branch-and-cut algo-

rithm. For a general description of the branch-and-cut scheme see, e.g., [21].

14 Ivana Ljubi¢

Since we can solve the separation problem in polynomial time (see below), it follows that we can
also solve the underlying LP-problem in polynomial time [21]. Hence, despite the exponentially
many UCUT-constraints, we can obtain the optimal fractional solution of the LP-relaxation in

polynomial time at the root node of the branch-and-bound tree.

We now describe the specific ingredients of our BC algorithm.

Initialization. We obtain an adequate choice of the initial set of constraints by choosing the de-
gree inequalities that correspond to the leaves of the block-cut tree (according to the requirements
(5) for |W|=1):

z(da(v)) > 1,Yv € Vp, |07(v)] = 1.

For the optimal LP-solution obtained in such a way, further connectivity constraints may be

introduced as cutting planes described below.

Separation. Given a solution to the current partial LP, we build the support graph G, =

(Vr, Er U E4,), whose edge weights are defined as:

1, ifee By
Cc, = y

xl, otherwise

o~

where x/, represents the fractional value of the corresponding variable in the current LP. In each
iteration, violated constraints are detected by means of minimum weight cuts in the support
graph. For the computation of minimum cuts, we use an efficient algorithm proposed by Padberg
and Rinaldi [22] and implemented by Jiinger et al. [13]. The details of this implementation and

an exhaustive comparison of a variety of minimum weight cut algorithms are given in [13].

We perform separation in two stages. As the block-cut graph needs to be edge-biconnected, we
first impose the edge-connectivity requirements. An edge-connectivity constraint is detected if
the minimum cut is found whose weight is less than two. In the second separation phase, when
all edge-connectivity constraints are satisfied, we check if there are some uncovered cut-vertices.
Therefore, for each cut-vertex v € Vi, we reduce the support graph G, by eliminating v from it.
In other words, we search for the minimum weight cut in the graph (Vy\ {v}, ExUFEA\ d(v),).

If the cut we found is less than one, the corresponding constraint is inserted into the system.

In both phases, before resolving the LP, we add multiple disjoint connectivity cuts (see, e.g., [19]).
For this purpose, edge weights of the detected cut are set to one in the support graph, and a new

minimum cut is calculated. Our computational experiments have confirmed that this strategy is

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 15

beneficial versus the separation of single connectivity cuts, which is mainly due to the fact that
adding several violated cuts at once saves the time-consuming process of solving several LPs.
Finally, our preliminary experiments have also shown that it is beneficial to insert all violated

constraints regarding uncovered cut-vertices before resolving the LP.

Branching and Enumeration Rules. We branch on a single variable according to the

CloseHalfExpensive strategy [28]. Suppose x is the fractional solution of the currently solved
linear program. Among the set of variables “close” to 0.5, we select the one with the maximum
absolute cost, i.e. with the maximum objective value coefficient (note that our edge weights are
positive). The best first search strategy has been used as the default enumeration strategy: from
the set of open subproblems the “most promising” one is selected. In our case, the node with the

maximal local lower bound is said to be the most promising one.

Initializing Upper Bounds. Using good upper bounds plays an important role in the design

of branch-and-bound based algorithms. The better the upper bound, the more nodes in the
branch-and-bound tree can be fathomed. For the initialization of upper bounds, we used the
memetic algorithm (MA) proposed in [18] which is the state-of-the-art approach to V2AUG.
When solving small and medium-sized instances, we observed that there is a trade-off between
the MA’s running time and the running time needed to prove optimality. Thus, by default,
we used a weaker termination criterium: the population size was set to 100 and the MA was
terminated after a new best solution was not found during the last {2 = 1000 iterations. These
parameters are set according to preliminary tests. Because of MA’s non-deterministic nature, we
ran it with a fixed seed value. We will refer to this initialization strategy as the weak initialization

of upper bounds.

3.2 The Branch-and-Cut-and-Price Algorithm

In this section we propose an enhancement of the previous BC approach, the branch-and-cut-
and-price method, which is achieved by embedding a column generation method into each node
of the branch-and-cut tree. For an introduction to the column generation approach embedded
in an enumeration framework (e.g., branch-and-price, branch-and-cut-and-price), we refer to [4],
for example. We also extend the BC with a local improvement algorithm as a primal heuristic.

In the following, we highlight the column generation procedure and the primal heuristic.

16 Ivana Ljubié

Sparse and Reserve Graph Pricing. The size of feasible solutions in our problem is bounded

by n (the number of vertices), while the number of variables is bounded by (g) —n+1 in the worst
case, when the graph is complete and Gj is a tree. It has been shown that column generation may
also be used to speed-up the computation of (integer) linear programs even when the number of
variables is polynomial in input size, if the size of any basic solution is comparatively sparse [12,

4]. This increase of speed is achieved by using the sparse and reserve graph pricing technique.

The small set of active variables used to initialize the restricted master problem corresponds to
a subgraph of the original graph which is called the sparse graph (see [8,23,25], for example).
In addition to the sparse graph, Jiinger et al. [12] proposed the usage of the reserve graph. In
one pricing iteration, all edges from the reserve graph with negative reduced costs are added
to the restricted problem and the LP is resolved. If all edges from the reserve graph price out
correctly, complete pricing is performed: from the set of all inactive edges, those with negative
reduced costs are determined and added to the LP at once. As proposed in [12] in the context
of TSP, we use the 5-nearest neighbor graph to initialize the sparse graph, and its difference to

the 10-nearest neighbor graph we set to be the reserve graph.

During pricing, we also fix some inactive variables by their reduced costs [23,28]. If our current
branch-and-cut node is the root of the remaining branch-and-cut tree, we search for inactive

variables x.,e € E 4 such that:

¢(LB) +r. > UB,.

Here ¢(LB) denotes the last computed lower bound, UB,, represents the global upper bound, and
re represents the reduced costs of the variable x.. Such variables x. can be discarded forever.
The other variables are inserted in a list that maintains possible candidates that can be priced

in later iterations.

Primal Heuristic. The initial upper bound of the branch-and-cut algorithm proposed so far

can be improved only if the LP-solution is integer feasible which happens rather rarely. Therefore
we enhance the method with a primal heuristic which is applied at each node of the branch-and-
bound tree, before a branching step is applied, in order to generate new and better feasible

solutions.

The fractional LP-solutions occurring in the lower bound computations may give a good insight
into the structure of optimum or near optimum feasible solutions. OQur heuristic is designed in
the following way: Starting from the fractional solution z’ of the last LP, we generate a support

block-cut graph using the edges of the block-cut tree T' and the edges (i.e. variables) from the

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 17

set EprHeur, Wwhere

Eereur = {6 S EA | xle > pereur}-

Ppriewr € [0,1] is a fractional parameter which controls the influence of the LP solution on the

generation of feasible solutions.

If the support graph is not biconnected, we first make it feasible by adding an additional subset of
augmentation edges as described in the following. Later, we apply a local improvement procedure

that removes redundant edges from the support graph.

Repairing the Support Graph: Iteratively, non-redundant edges are randomly selected from
Ea \ Eprprenr and included in the support graph. This process is repeated until all cut-
vertices are covered. Intuitively, cheaper edges appear in optimum solutions more likely than
expensive edges. Therefore, the selection of edges for inclusion is biased toward cheaper

edges [24,18].

Local Improvement: Finally, from such a feasible solution, say E’,, we eliminate the redundant
edges by using the local improvement described below, with one exception; to better exploit

the LP-solution, we forbid elimination of those edges with x, = 1.

A feasible augmentation E’; is said to be locally optimal with respect to the number of
edges, if the removal of any edge e € E’; violates the biconnectivity property of graph
G' = (V,Ey UE]), where E!, C E, is the set of original augmentation edges corresponding
to E’;. The local improvement operator makes a given feasible solution locally optimal by
removing redundant edges. An edge e € E/ is said to be redundant if its removal does not
violate the biconnectivity property of G’. As a first step, the algorithm identifies obviously
essential edges that must remain in F/, i.e. those edges that are the only possibility to
connect a certain cut-component of a cut-vertex v, to any other of v.’s cut-components. The
remaining not obviously essential edges from E’;, are then processed one-by-one in decreasing-
costs order. They are temporarily removed from E’,, and the cut-vertices to whose covering e
contributes are checked. If any of them are now uncovered, e is not redundant and therefore

included in F 4 once more.

In the worst case, the total computational effort of this local improvement procedure is O(|E4|*-

[Vr|-a(|Vr|,|Eal)) per call.

18 Ivana Ljubié

4 Computational Results

In this section, we analyze the performance of the proposed branch-and-cut-and-price approach.
In particular, first we investigate impacts of extending the BC algorithm with pricing. Then we
study the role of the primal heuristic. Finally, we examine the trade-off between initializing the

BCP with high-quality upper bounds and its overall performance.

Our algorithm is implemented using C++ under Linux and all the experiments reported in this
paper have been run on a Pentium IV /2.8 GHz PC with 2GB RAM. The only exception are the
results reported in Section 4.1, where, for comparison purposes, we used a Pentium II1T1/800 MHz

machine.

We used the ABACUS 2.3 software system! as a generic implementation of the branch-and-
cut-and-price approach [4,28]. CPLEX 7.12 has been used as the LP-solver. In order to make a
fair comparison to the existing approaches, the preprocessing proposed in [18] has been applied
to all considered instances, and to all approaches (including metaheuristics and approximation
algorithms) mentioned within the paper. If not otherwise mentioned, reported running times

include preprocessing times as well.

4.1 Benchmark Instances

As already observed, shrinking can always trivially reduce the problem of augmenting a general
connected graph Gg to the problem of augmenting a tree. Therefore, we consider only instances
such that the fixed graph Gy is a spanning tree. We considered two types of networks that we refer
to as: (1) randomly generated networks and (2) real-world networks derived from the TSPLIB.
These two types of benchmark instances are designed to capture different aspects of networks

and to understand the behavior of the BCP on them.

Randomly Generated Networks [18]. Table 1 shows the characteristics of 810 instances

originally proposed in [18], divided in 27 groups Al to R2, each consisting of 30 graphs. We
call instances A1-D4 KRZ instances, since they were created using a random generator proposed
by Khuller et al. [15,29]. KRZ considered graphs with up to 50 nodes and proposed 3 different
density types (sparse, medium and dense) defined by the following functions, respectively: fi(n) =

3n, fa(n) = nln(n), f3(n) = (5). For all unordered pairs of nodes, given a density type

! http://www.informatik.uni-koeln.de/abacus/
2 http://www.ilog.com/products/cplex/

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 19

i € {1,2,3}, a random integer value r is drawn uniformly in {1,...,n(n — 1)}. If r < fi(n), an
edge is created with the integer cost uniformly distributed in {1, ..., (Z)} A random spanning
tree is then determined on the graph, yielding the set of fixed edges Ey. When creating graphs
with |V| > 70 and for density type i = 1, we were not able to generate vertex-biconnected graphs
by applying those rules, and therefore, we changed the function f; to f{(n) = 0.3(2’),Vn > 70.
Instances are grouped according to their complexity as far as approaches tested in [18] are

considered. The density types are provided in the column denoted by “type”.

Instances of groups M,N and R are generated using primarily the same ideas, but with fixed
density values (0.15, 0.25 and 0.5, respectively) and with edge costs taken from several intervals
as provided in Table 1. Column dens provides the density of each group, whereas column “c, €”

gives the intervals from which the edge costs are drawn.

Table 1 also shows the comparison between our branch-and-cut algorithm, described in Sec-
tion 3.1, and the memetic algorithm (MA) proposed in [18]. The results are averaged over 30
different instances of the same group. Column OPT represents the averaged optimal values. The
next two columns provide MA results: the average percentage gap (%-gap) and the average run-
ning time in seconds (¢ [s]). The last four columns are devoted to the branch-and-cut algorithm:
the average running time in seconds (¢ [s]), the average number of generated subproblems (SP),
the average number of generated levels in the branch-and-cut tree (Lewvels), and the average
number of solved linear programs (LPs). To be able to compare our BC approach to MA, we

performed the experiments on the same machine: a Pentium-IIT/800 MHz.

All the instances of this group are now solved to provable optimality. The results show that
the branch-and-cut algorithm is significantly faster than the MA, which is the fastest heuristic
approach so far. According to results reported in [18], the algorithm of Khuller et al. [15], which
is the best approximation algorithm with factor 2, did not terminate for the instances with 200
nodes (R-group) within the allowed maximum time of 20 000 seconds on the same machine. In the
branch-and-cut algorithm, all instances (with the exception of the ones of the N- and R-group) are
solved using slightly more than one subproblem. This means that, in most cases, the cutting plane
method performed in the root node solves the underlying problem to optimality. Furthermore,
this means that the lower bounds obtained by relaxing our ILP formulation are quite strong for
these types of graphs. For all these reasons, we consider these randomly generated networks as
easy, and conduct our study on significantly larger and more challenging real-world networks

described below.

20 Ivana Ljubié

Table 1. Characteristics of randomly generated instances and average results of the memetic algorithm

and the BC approach. The branch-and-cut algorithm solved all the instances to optimality in less than

a minute.
MA BC
Group | |V| dens ce € type| OPT |%-gap t[s] | t[s] SP Levels LPs
Al 20 0.16 [1..190] 1 511.50 0.00 0.00| 0.00 1.17 1.07 1.37
A2 30 0.10 [1..435) 1| 1764.77| 0.00 0.00| 0.00 1.07 1.03 1.33
A3 40 0.08 [1..780] 1| 4055.47 0.00 0.01} 0.01 1.00 1.00 1.10
A4 30 0.12 [1..435] 2| 1948.07 0.00 0.01| 0.01 1.27 1.13 147
A5 40 0.10 [1..780] 2| 3753.87 0.00 0.02| 0.01 1.27 1.13 147
B1 60 0.05 [1..1770] 1|13426.03| 0.00 0.03| 0.02 1.10 1.03 1.37
B2 20 0.50 [1..190] 3| 163.77| 0.00 0.12| 0.00 1.60 1.30 2.27
B3 50 0.06 [1..1225] 1| 8311.93 0.00 0.02} 0.02 1.13 1.07 1.30
B4 50 0.08 [1..1225] 2| T7131.37 0.00 0.08] 0.02 1.53 1.27 2.00
B5 60 0.07 [1..1770] 2| 12460.57 0.00 0.12| 0.03 1.27 1.13 1.70
B6 70 0.06 [1..2415] 2119849.73 | 0.00 0.32| 0.05 1.13 1.07 1.47
c1 80 0.06 [1..3160] 2127085.03| 0.00 0.41| 0.07 1.27 113 1.57
c2 90 0.05 [1..4005] 2140478.83 | 0.00 0.49| 0.09 1.13 1.07 1.33
c3 100 0.05 [1..4950] 215244130 | 0.00 0.62| 0.12 1.07 1.03 1.33
c4 30 0.50 [1..435] 3| 341.50| 0.00 0.38| 0.01 1.07 1.03 1.53
D1 70 0.15 [1..2415] 1| 7339.93 0.00 1.68| 0.37 1.27 1.13 1.50
D2 40 0.50 [1..780] 3| 762.70| 0.00 0.75| 0.05 1.33 1.17 1.90
D3 90 0.15 [1..4005] 1112773.33 0.00 391| 1.64 1.27 1.13 1.57
D4 80 0.15 [1..3160] 1| 9886.33 0.00 2.87| 1.19 1.27 1.13 143
D5 100 0.15 [1..4950] 1’| 13489.10 0.02 5.90| 213 1.40 1.20 1.80
M1 70 0.15 [10.1000] -| 3492.33| 0.00 1.70| 0.46 1.40 1.20 2.00
M2 80 0.15 [10.1000] -| 3266.33| 0.00 2.86| 1.04 1.27 1.13 1.77
M3 90 0.15 [10..1000] -| 3433.33| 0.00 4.31| 1.62 1.13 1.07 1.37
N1 100 0.25 [11..50] -| 389.93| 0.17 9.50| 2.83 19.07 3.50 18.77
N2 110 0.25 [11..50] -| 413.63| 0.39 13.72| 295 7.00 2.53 7.63
R1 200 0.50 [1.100] -| 128.93| 0.08 39.78|19.31 220 1.50 2.47
R2 200 0.50 [5..100] -| 331.54| 042 58.52|16.84 3.60 1.63 3.50

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 21

Instances derived from Reinelt’s TSP-library (TSPLIB). In order to check the practical

feasibility of the proposed BCP algorithm, we considered several instances randomly selected from
the TSPLIB?. In the selected graphs defining traveling salesman problems, nodes are defined as
cities or as drilling points. Due to the real-world aspect of these instances, we take them as the
basis for the rest of our computational study. pr226, 1in318, pr439, and pcb442 are of Euclidean
type, meaning that the vertices represent points in the Euclidean plane and edge costs are the
Euclidean distances of the corresponding points rounded up to the nearest integer value. The
instance pab61 is a complete graph with edge costs directly given by a matrix — the triangle

inequalities are satisfied.

Since all these instances represent complete graphs G, and as the incomplete graphs are of par-
ticular interest as well, additional sparse instances pr226-sp, 1in318-sp, pr439-sp, pcb442-sp,
and pab61-sp are derived from the original TSPLIB-graphs as follows. For each vertex of the orig-
inal graph, we take the edges to its [|V|-10%] nearest neighbors, i.e. we create the 10%-nearest-
neighbor graphs. In the case of instance pr226-sp, the 10%-nearest-neighbor graph turned out
not to be biconnected, and the 15%-nearest-neighbor graph is used instead. For the Euclidean
instances we further calculate the Delaunay triangulation yielding additional sparse instances
pr226-dt, 1in318-dt, pr439-dt, and pcb442-dt. We consider graphs in which k% of nearest
neighbors of each node are included in G, where k € {20,30,...,90}. Finally, we consider two
additional groups with a larger number of vertices: d1291 and d2103, derived from the TSPLIB

as well.

In all TSPLIB-derived graphs, the fixed graph Gy is set to be the minimum spanning tree, as this
corresponds to a real-world situation in which the MST models an existing connected network

that needs to be augmented.

4.2 Branch-and-Cut vs. Branch-and-Cut-and-Price

We first test the benefits of incorporating column generation, based on sparse and reserve graph
techniques, into the BC framework. The default initialization of the sparse and reserve graph,
with 5— and 10— nearest-neighbor graphs (NNGs) has been changed in the case of pr226 and
pr439 groups. In order to ensure feasibility, we initialize the sparse graph with 8— and 6— NNGs,
and the reserve graph with 12— and 10—NNGs, respectively. For all computational experiments
presented in this section we used a Pentium IV/2.8GHz with 2 GB RAM. Except for pricing, all
other attributes of the BC and BCP are kept the same.

% Available at http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

22 Ivana Ljubi¢

80

4o BC g o ° s BC s "
© BCP-noPrHeur © BCP-noPrHeur o
o o

60
1
300
o

o) o ° z 8 o
-8+ o e o ° -
o o
° o
o 8 g e o o o ° o o 0
- o
N <3 o o
o o
T T T T T T T T T T 1 T T T T T T T T T T 1
dt 10 20 30 40 50 60 70 80 90 100 dt 10 20 30 40 50 60 70 80 90 100
Instances Instances
(a) pr439 (b) pcb44d2

Fig. 2. Comparing running times (in seconds) of the branch-and-cut algorithm (BC) and the branch-
and-cut-and-price algorithm without primal heuristic (BCP-noPrHeur). Per instance group, results for

11 instances with different densities of k% (x-axis) are shown.

To be able to investigate the role of pricing in improving the BC performance, we first switch
off the primal heuristic. The results depicted on Figure 2 show the comparison of the running
times between the branch-and-cut algorithm as described in Section 3.1 and the BCP algorithm
without primal heuristic (BCP-noPrHeur). Furthermore, we subtracted the preprocessing times
(see [18]), thus comparing only the computational effort of “pure” exact algorithms. The obtained
results show that the incorporation of pricing into the branch-and-cut framework for the V2AUG
problem significantly speeds up the computation. For the pcb442 (pr439) group, the overall
running time can be reduced by about 50% (35%) on average. In addition, one observes that
the density of an instance does not substantially influence the running time, if pricing is used.
Conversely, for dense graphs, the overall running time without pricing may be up to three times

longer (for example, see the graph pcb442, compared to pcb442-sp).

4.3 Benefits of the Primal Heuristic

Figure 3 depicts one example that shows the advantage of using a primal heuristic. The perfor-
mance of the BCP algorithm is better, if only promising variables (i.e. those whose LP-values
are greater than a certain threshold value pprpeqr) are used within the upper bounding pro-
cedure. We observe that, if all possible augmentation edges (i.e. ;; > 0) are used within the
upper bounding procedure, there is no significant difference between the performance of the BCP

algorithm with or without the primal heuristic.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 23

12400
1

12200
1

—— upper bound
rrrrr lower bound

12000
1

Objective function value

11800
1

t[s]

(a) BCP performance without primal heuristic.

12400
1

12200
1

—— upper bound
""" lower bound

12000
1

11800
1

Objective function value

t[s]

(¢) BCP with ppraeur = 0.2.

Fig. 3. Gap versus time plot for 1in318 (70) instance.

good feasible solutions can be found earlier.

Objective function value

Objective function value

12400
1

12200
1

—— upper bound
rrrrr lower bound

12000
1

11800
1

t[s]

(b) BCP with pyrseur = 0.0.

12400
1

12200
1

—— upper bound
""" lower bound

12000
1

11800
1

t[s]

(d) BCP with pprseur = 0.5.

Due to the application of the primal heuristic,

Further experiments have shown that the most robust performance is obtained by setting pprreur

to a standard value of 0.5, usually used within similar upper bounding procedures. Indeed, setting

the value of pprreur too high often leads to infeasible solutions that need to be repaired by

randomly adding additional augmentation edges. This leads to solutions of worse quality and to

higher computational times needed for repairing them.

4.4 Influence of Upper Bounds

We now show the influence of the initialization with high-quality upper bounds to the overall

performance of the BCP algorithm. As our heuristic choice, we used the memetic algorithm [18].

We considered the following two initialization settings:

— In the default BC / BCP implementation, as described in Sections 3.1 and 3.2, respectively,

we used the weak initialization. The population size was set to 100 and each MA run was

24 Ivana Ljubi¢

terminated when no new best solution could be identified during the last 2 = 1 000 iterations.

This setting corresponds to a fast initialization, and therefore to low-quality upper bounds.

— In BCP-Strong-Init, the convergence criteria for the MA was stronger (the same as described
in [18]), thus 2 = 10000 while the population size was set to 800. Here, we allow for longer

running times to obtain high-quality feasible solutions.

Table 2 summarizes the results for all the TSPLIB-derived instances that could be solved to
provable optimality. For the three strategies mentioned above, the running time in seconds (¢ [s]),
the total number of generated subproblems (SP) and the total number of solved LPs (LP) are
given. Additionally, for BCP and BCP-Strong-Init, tpest [s] shows the time when the optimal
solution has been detected. Column tp,cp [s] gives the number of seconds we needed to run the
preprocessing [18]. The results indicate unambiguously that the pricing together with the primal
heuristic substantially improves the performance of the branch-and-cut algorithm. The overall
running time can be reduced by more than 50% on average (the average/median BC running time
is 78/34, whereas the corresponding BCP time is 33/18 seconds). Also the size of the branch-and-
bound tree can be reduced by about 20% on average (the average/median number of SPs needed
to solve the BC is 88/45, whereas the corresponding BCP number is 71/31). Conversely, when
comparing the running times of BCP and BCP-Strong-Init, we observe that the initialization
with the high-quality upper bounds slows down the overall performance. As we will see below,
the real benefits of the strong initialization are first visible when the instances become much

larger.

Table 3 shows the results for large graphs for which we were not able to find optimal solutions.
For the groups pab61, d1291 and d2103, our branch-and-cut-and-price algorithm terminated
prematurely because of memory limitations. The only exception was the graph d2103 (2), for
which we found the optimum. Therefore, we measured the following optimality gap:

UB, — LB,

1
1L, x 100%,

gap, =

where UB| represents the costs of the best known feasible augmentation (obtained either within
the MA, or inside of the BCP), and LB, is the global lower bound. The optimality gap, expresses

that the solution with costs UB, is at most gapg% more expensive than the optimal solution.

In Table 3, we consider three different settings: The default BCP implementation as described
in Section 3.2 (BCP), the BCP algorithm without primal heuristic (BCP-noPrHeur), and the
BCP with strong initialization (BCP-Strong-Init). In the UB and UBjp,; columns, we show the

upper bounds obtained after the weak and the strong initialization, respectively. For each of

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 25

Table 2. Comparing the BC algorithm and the BCP algorithm (both with the weak initialization)
with the BCP algorithm with the strong initialization (BCP-Strong-Init). The best running times are
highlighted.

BC BCP BCP-Strong-Init
Tnstance | OPT 5ol 1 SP LP | t[s] SP LP twufs)| t[s] SP TPty |s]
pr226-dt 25152 0.3 0.9 5 9 1.0 5 9 0 3.2 5 9 2
pr226-sp 22824 04| 2.0 3 5| 22 5 10 1] 89 5 10 8
pr226 (20) |[22824 05| 2.3 3 4 2.3 3 9 2 8.9 3 9 8
pr226 (30) (22824 0.7 3.7 5 11 3.9 7 18 3| 10.1 3 14 9
pr226 (40) (22824 0.9 3.9 5 9 3.5 5 13 3| 11.9 5 12 10
pr226 (50) |[22824 1.3 4.5 5 11 3.6 5 14 3| 12.4 7 14 10
pr226 (60) |[22824 2.0 5.0 5 11 4.4 5 13 4] 12.1 7 16 11
pr226 (70) |[22824 2.5 5.8 5 12 5.3 5 13 4| 12.4 5 19 11
pr226 (80) |[22824 2.6 6.1 7 12 5.0 5 10 41 12.1 5 13 11
pr226 (90) |[22824 2.7 6.7 5 10 5.4 3 13 5| 13.4 5 11 12
pr226 22824 2.6 6.5 5 10 5.2 3 11 5| 14.0 5 12 13
pr226-avg 1.5 4.3 4.8 9.5 3.8 4.6 121 3.1 10.8 5.0 12.6 9.5
1in318-dt 12013 2.4 1.3 3 5 1.5 3 6 1 7.2 3 6 7
1in318-sp 11797 2.5 13.1 73 53| 11.9 59 66 10| 20.5 59 65 19
1in318 (20) | 11797 3.2 17.7 73 53| 12.4 59 65 11| 19.6 59 65 18
1in318 (30) | 11797 6.3 214 73 53| 13.2 59 66 11| 22.9 59 65 21
1in318 (40) | 11797 10.1| 245 73 53| 14.0 59 65 12| 29.6 59 65 28
1in318 (50) | 11797 10.6| 30.6 81 56| 14.5 59 65 13| 24.8 59 65 23
1in318 (60) | 11797 19.9| 32.7 73 53| 16.3 59 66 14| 28.3 59 65 26
1in318 (70) | 11797 24.1| 36.4 73 53| 16.8 59 66 15| 30.0 59 65 28
1in318 (80) | 11797 29.71 39.5 73 53| 18.1 59 68 16| 24.6 59 65 23
1in318 (90) | 11797 32.5| 45.8 85 62| 18.3 59 68 16| 28.3 59 65 26
1in318 11797 23.1| 44.6 81 56| 18.2 59 68 16| 28.5 59 65 26
1lin318-avg 15.0| 28.0 69.2 50.0f 14.1 539 60.8 12.3| 24.0 53.9 59.6 22.3
pré439-dt 28310 8.5 5.1 15 19 5.4 15 19 1] 13.7 15 19 9
pr439-sp 26800 10.0| 18.8 41 37| 14.8 27 31 13| 25.3 27 31 24
pr439 (20) |[26800 14.1] 288 45 38| 19.2 31 32 17| 38.8 31 32 37
pr439 (30) |[26800 32.7| 38.6 45 411 21.9 31 33 19| 50.2 31 34 48
pr439 (40) |[26800 32.0| 48.8 45 37| 25.7 31 32 23| 54.6 31 34 51
pr439 (50) |[26800 49.5| 55.4 45 41| 29.8 31 33 27| 57.9 31 35 55
pr439 (60) |26800 76.0| 62.9 45 39| 31.4 31 35 28| 58.0 31 35 55
pr439 (70) |26800 89.7| 71.8 45 40| 32.8 31 34 30| 60.9 31 32 58
pr439 (80) |[26800 99.7] 79.0 45 41| 36.4 31 36 33| 65.9 31 32 63
pr439 (90) |[26800 107.9| 81.8 45 40| 40.7 31 33 37| 69.4 31 33 66
pr439 26800 73.3| 84.8 45 39| 40.1 31 35 37| 69.6 31 35 66
pré439-avg 53.9| 52.3 41.9 37.5| 27.1 29.2 32.1 24.1| 51.3 29.2 320 48.4
pcb442-dt 10328 60.7| 17.5 97 99 18.1 97 101 18| 284 89 100 28
pcb442-sp 10460 12.0| 84.1 253 195| 62.1 195 201 58| 82.0 195 202 78
pcb442 (20) | 10460 18.6 1232 253 195 86.2 253 198 80| 81.8 195 201 77
pcb442 (30) | 10460 34.51152.6 253 195| 83.5 195 201 761 96.1 195 201 90
pcb442 (40) | 10460 36.11195.0 253 195| 92.1 195 201 821105.3 195 200 96
pcb442 (50) | 10460 46.4|241.1 253 191| 96.5 195 200 861112.0 195 199 102
pcb442 (60) | 10460 78.81270.4 253 195| 99.6 195 201 891118.9 195 200 109
pcb442 (70) | 10460 93.11321.7 253 195|118.7 253 198 107 |131.6 195 201 121
pcb442 (80) | 10460 101.4|347.4 253 195|104.7 195 201 94 (120.5 195 201 110
pcb442 (90) | 10460 108.0|373.7 253 195|107.7 199 196 961132.2 195 201 122
pcb442 10460 74.0383.5 253 191]|108.4 199 196 961125.8 199 196 114
pcb442-avg 60.3(228.2 238.8 185.5| 88.9 197.4 190.4 80.2 [{103.1 185.7 191.1 95.2

26 Ivana Ljubié

these settings, we provide the total running time in seconds (¢ [s], including preprocessing and

MA running time) and the optimality gap (gap,).

Table 3. Comparing three BCP settings for large instances: the BCP algorithm without the primal
heuristic (BCP-noPrHeur), the BCP with the primal heuristic (BCP), and the BCP with the primal
heuristic and the strong initialization (BCP-Strong-Init). Both BCP-noPrHeur and BCP use the weak

initialization of upper bounds (see Section 3.1). The best optimality gap values are highlighted.

BCP-noPrHeur BCP BCP-Strong-Init
Instance UB tls] gap, ts] gap, UB+tan £ [s] gap,
pab61-sp 794| 580.8 2.7 596.1 1.9| 784| 593.2 1.4
pab61l (20)| 828| 682.3 7.1| 681.5 1.8/ 786 694.0 1.6
pab61 (30)| 849| 750.5 9.8| 754.8 3.3| 782| 763.8 1.1
pab61l (40)| 837| 934.6 8.2| 933.6 3.4| 785 774.1 1.5
pab61 (50)| 851|1094.4 10.0{1067.1 3.2 785| 852.2 1.4
pab61 (60)| 805|1018.4 4.111208.7 3.2 784 929.0 1.4
pab61 (70)| 872|1771.4 12.8|1377.7 3.1| 785| 938.8 1.6
pab61 (80)| 879|2226.3 13.7|1401.5 3.4| 788|1031.2 2.0
pab61 (90)| 844|2243.6 9.1{1380.0 2.7| 785|1042.0 1.6
pab61 87811754.3 13.5|1690.4 3.4| 786| 842.6 1.7
d1291 (2) (12298(1443.4 5.4|1450.7 1.5| 11788|1493.2 1.0
d1291 (5) |(12210(1571.5 4.6|1583.4 1.5|11855|1624.6 1.5
d1291 (10)(12634(1772.0 8.3|1768.2 1.7|11924|1810.7 1.7
d1291 (30)|13357(3499.8 14.7|3305.1 1.9]11997|3385.3 1.9
d2103 (2) | 7633|3766.6 0.0(3723.5 0.0| 7490(3749.7 0.0
d2103 (5) | 7610|4637.4 2.7(4653.9 0.4| 7521|4692.1 0.4
d2103 (10)| 7691|5478.1 3.9(5468.6 0.7| 7503|5529.3 0.7

Table 3 indicates that for large instances it is recommendable to run the MA to obtain as good
solutions as possible (£2 = 10000) and to keep higher diversity (population size of 800). While
for small and medium-size instances the computation of high-quality upper bounds can slow-
down the optimization, for larger instances it helps significantly in reducing the gap between the
global lower bound and the best-known feasible solution. One observes that, the BCP-Strong-Init
approach produces optimality gaps of up to 2%, the gap of the BCP approach is below 4%, while
the BCP algorithm without the primal heuristic and with the weak initialization produces the

worst solutions, with optimality gaps of up to 14%.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 27

5 Conclusions

This paper constitutes the first theoretical and computational study on exact approaches to
the weighted vertex biconnectivity augmentation problem. Using the connectivity properties of
the block-cut graph, we have proposed a new orientation-based characterization of augmented
block-cut trees. Then, we have derived two ILP formulations with an exponential number of
inequalities relying on the connectivity properties of the block-cut graph. In contrast to recent
results published by Chimani et al. [3] for solving related vertex-biconnected Steiner network
problems, we have shown that the ILP model on undirected graphs is as strong as the model on

directed graphs, and is therefore preferable in practice.

To solve V2AUG, we have extended the traditional branch-and-cut algorithm by a column gener-
ation strategy. Furthermore, we have studied the role of the primal heuristic and the importance

of the initialization with good upper bounds for the overall BCP performance.

We have obtained optimal solutions for complete graphs with more than 400 nodes. For instances

with more than 2000 nodes, we have achieved optimality gaps that are strictly below 2%.

Acknowledgements

The author is greatly indebted to: Michael Jiinger for providing the implementation of the
minimum-cut algorithm [13] and the framework for the sparse and reserve graph pricing [28]; to

Maria Kandyba, Petra Mutzel and Giinther Raidl for very useful discussions on this topic.

References

1. J. Bang-Jensen, M. Chiarandini, and P. Morling. A computational investigation of heuristic algo-
rithms for 2-edge-connectivity augmentation. Networks, 2009. to appear.

2. M. Chimani, M. Kandyba, I. Ljubi¢, and P. Mutzel. Strong formulations for 2-node-connected Steiner
network problems. In Proceedings of COCOA 2008, volume 5165 of LNCS, pages 190-200. Springer,
2008.

3. M. Chimani, M. Kandyba, I. Ljubi¢, and P. Mutzel. Orientation-based models for {0, 1, 2}-survivable
network design: Theory and practice. Mathematical Programming, 2009. to appear.

4. M. Elf, C. Gutwenger, M. Jiinger, and G. Rinaldi. Branch-and-cut algorithms for combinatorial
optimization and their implementation in ABACUS. In M. Jiinger and D. Naddef, editors, Compu-
tational Combinatorial Optimization, volume 2241 of LNCS, pages 157—-222. Springer, 2001.

28

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Ivana Ljubi¢

K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM Journal on Computing, 5(4):653—
665, 1976.

B. Fortz and M. Labbé. Exact and heuristic algorithms for the design of survivable networks with
bounded rings. Mathematical Programming, 93:27-54, 2002.

G. N. Frederickson and J. Jaja. Approximation algorithms for several graph augmentation problems.
SIAM Journal on Computing, 10(2):270-283, 1981.

M. Grotschel and O. Holland. Solving matching problems with linear programming. Mathematical
Programming, 33:243-259, 1985.

M. Grotschel, C. Monma, and M. Stoer. Polyhedral and computational investigations for designing
communication networks with high survivability requirements. Operations Research, 43(6):1012—
1024, 1995.

F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

T.-S. Hsu. Simpler and faster biconnectivity augmentation. Journal of Algorithms, 45(1):55-71,
2002.

M. Jiinger, G. Reinelt, and S. Thienel. Provably good solutions for the traveling salesman problem.
Zeitschrift fir Operations Research, 40:183-217, 1994.

M. Jiinger, G. Reinelt, and S. Thienel. Practical performance of efficient minimum cut algorithms.
Algorithmica, 26(1):172-195, 2000.

S. Kersting, G. R. Raidl, and I. Ljubi¢. A memetic algorithm for vertex-biconnectivity augmentation.
In Applications of Evolutionary Computing: EvoWorkshops 2002, volume 2279 of LNCS, pages 102—
111. Springer, 2002.

S. Khuller, B. Raghavachari, and A. Zhu. A uniform framework for approximating weighted connec-
tivity problems. In Proceedings of SODA 1999, pages 937-938. SIAM, 1999.

S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. Journal of
Algorithms, 14(2):214-225, 1993.

I. Ljubi¢ and J. Kratica. A genetic algorithm for the biconnectivity augmentation problem. In
Proceedings of CEC 2000, pages 89-96. IEEE Press, 2000.

I. Ljubi¢ and G. R. Raidl. A memetic algorithm for minimum-cost vertex-biconnectivity augmenta-
tion of graphs. Journal of Heuristics, 9:401-427, 2003.

I. Ljubi¢, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algorithmic frame-
work for the exact solution of the prize-collecting steiner tree problem. Mathematical Programming,
Series B, 105(2-3):427-449, 2006.

T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with connectivity
requirements. Networks, 45(2):61-79, 2005.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,
New York, 1998.

M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem. Mathe-
matical Programming, 47:19-36, 1990.

23

24.

25.

26.

27.

28.
29.

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation 29

. M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. STAM Review, 33:60-100, 1991.

G. R. Raidl. An efficient evolutionary algorithm for the degree-constrained minimum spanning tree
problem. In Proceedings of CEC 2000, pages 104-111. IEEE Press, 2000.

G. Reinelt. Fast heuristics for large geometric traveling salesman problems. ORSA Journal on
Computing, 4:206-217, 1992.

H. Robbins. A theorem on graphs with an application to a problem of traffic control. American
Mathematical Monthly, 46:281-283, 1939.

M. Stoer. Design of Survivable Networks, volume 1531 of LNM. Springer, 1992.

S. Thienel. A Branch-And-CUt System. PhD thesis, University of Cologne, Germany, 1995.

A. Zhu. A uniform framework for approximating weighted connectivity problems. B.Sc. thesis at

the University of Maryland, MD, May 1999.

