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Abstract The Two Level Network Design (TLND) problem arises when local
broadband access networks are planned in areas, where no existing infrastructure
can be used, i.e., in the so-called greenfield deployments. Mixed strategies of Fiber-
To-The-Home and Fiber-To-The-Curb, i.e., some customers are served by copper
cables, some by fiber optic lines, can be modeled by an extension of the TLND.
We are given two types of customers (primary and secondary), an additional set of
Steiner nodes and fixed costs for installing either a primary or a secondary technol-
ogy on each edge. The TLND problem seeks a minimum cost connected subgraph
obeying a tree-tree topology, i.e., the primary nodes are connected by a rooted pri-
mary tree; the secondary nodes can be connected using both primary and secondary
technology. In this paper we study an important extension of TLND in which addi-
tional transition costs need to be paid for intermediate facilities placed at the tran-
sition nodes, i.e., nodes where the change of technology takes place. We call this
problem TLNDF.
The introduction of transition node costs leads to a problem with a rich structure per-
mitting us to put in evidence reformulation techniques such as modeling in higher
dimensional graphs (which in this case are based on a node splitting technique).
We first provide a compact way of modeling intermediate facilities. We then present
several generalizations of the facility-based inequalities involving an exponential
number of constraints. Finally we show how to model the problem in an extended
graph based on node splitting. Our main result states that the connectivity constraints
on the splitted graph, projected back into the space of the variables of the original
model, provide a new family of inequalities that implies, and even strictly domi-
nates, all previously described cuts. We also provide a polynomial time separation
algorithm for the more general cuts by calculating maximum flows on the splitted
graph. We compare the proposed models both theoretically and computationally.
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1 Introduction

The Two Level Network Design (TLND) problem arises in the topological de-
sign of hierarchical communication, transportation, and electric power distribution
networks. Probably the most important application of TLND is in the context of
telecommunication networks, where networks with two cable technologies, fiber
optic and copper, are built. In local broadband access networks, if the Fiber-To-The-
Home (FTTH) strategy is used, every customer is provided with a distinct fiber optic
connection. A cheaper strategy is Fiber-To-The-Curb (FTTC), where the part of the
access network closest to the customer uses copper cables and facilities are installed,
to convert optical to electrical signals and vice versa. In greenfield deployments, i.e.
where there is no existing infrastructure, a mixed strategy of FTTC and FTTH is
often preferable. In such a case, telecommunication companies distinguish between
primary and secondary customers. The switching centers, important infrastructure
nodes and small businesses are considered as primary customers (i.e., those to be
served by fiber optic connections). Single households are not considered as being
consumers of a high potential and hence they only need to be supplied using copper
cables. The secondary technology is much cheaper, but the guaranteed quality of
the connections and bandwidth is significantly below the quality provided by the
primary one.

A large body of work has been done for the TLND and its variations (see below).
In this study we incorporate two realistic features that have not yet been considered
in previous studies of the TLND. Firstly, none of the previous approaches on TLND
considers the cost of establishing intermediate facilities at transition nodes, i.e.,
nodes in which the change of technology takes place. Typically, at transition nodes,
expensive switching devices need to be installed and the respective costs should not
be neglected. Secondly, the previous work on the TLND is based on the assumption
that all nodes in the network belong to the customer set. We relax this assumption,
allowing the existence of Steiner nodes as well. We call the new problem the Two
Level Network Design Problem with Intermediate Facilities (TLNDF).

This important problem generalizes problems with tree-star and star-tree topolo-
gies, like e.g., connected facility location, hierarchical network design, Steiner trees
or uncapacitated facility location. We consider an extended graph, where the in-
stallation of facilities is modeled as arcs. We show that connectivity constraints on
this splitted graph, projected back into the space of the variables of the original
model, provide a new family of inequalities that implies, and even strictly domi-
nates, all previously described constraints. We also provide a polynomial time sep-
aration algorithm for the more general inequalities by calculating maximum flows
on the splitted graph. Finally, our computational study demonstrates the efficiency
and practical applicability of the new inequalities.

1.1 Problem Definition

We consider the following generalization of the two level network design problem:
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Definition 1 (TLNDF). We are given an undirected graph G = (V,E) with a root
r ∈ V and a set of customers R ⊆ V \ {r}. To each edge e ∈ E we associate two
installation costs, c1

e ≥ c2
e ≥ 0. These correspond to the primary and secondary tech-

nology, respectively. The set of customers, R, is partitioned into the set of primary
and secondary customers P and S, respectively. Our goal is to determine a cost-
minimal subtree of G satisfying the following properties:

(P) each primary node in P is connected to the root node by a path that consists
of primary edges only,

(S) each secondary node in S is connected to the root by a path consisting of
primary and/or secondary edges,

(F) facility opening costs fi ≥ 0 are payed for each transition node i ∈V and
(E) on each edge e ∈ E at most one of technologies is installed.

Several observations can be made about the solution space of this problem: i) Since
c1

e − c2
e ≥ 0, there always exists an optimal solution which is a Steiner tree with a

tree-tree topology, i.e., it is composed of a rooted subtree of primary edges (primary
subtree) and a union of subtrees of secondary edges (secondary subtrees). Each
secondary subtree is rooted in a (transition) node of the primary subtree. ii) If facility
opening costs are the same for all facility locations, any leaf of the primary subtree
will be a primary node. Otherwise, if facility opening costs are location-dependent,
placing facilities at locations of Steiner nodes may provide cheaper solutions, i.e., a
leaf of the primary subtree may be any node from V \{r}. iii) This general definition
also covers the case in which potential facility locations are a true subset of V (which
can be modeled by setting fi := ∞ for the non-facility locations).

As we noted before, the problem discussed here incorporates two new fea-
tures when compared to the original definition given in Balakrishnan et al. [3], see
also Duin and Volgenant [7]. Firstly, the need to consider additional transition costs
due to the presence of two technologies on the network. The second new feature is
that we allow arbitrary subsets of V \{r} to be considered as the customer set. This
is because in practical applications nodes like street intersections need to be consid-
ered as well. Following the spanning tree definition of multi-level network design
problems given in [2], the TLND problem with Steiner nodes can also be seen as a
three-level network design problem in which the Steiner nodes are assigned to the
third group of customers and the installation costs for the third technology are set to
zero.

Literature Review

The concept of two level network design problems (more precisely, two-level span-
ning trees) has been developed in the 80’s and early 90’s. The hierarchical network
design problem, in which R = V \ {r} and |P| = 2, was the “initial” variant of the
TLND introduced by Current et al. [6]. This problem was later generalized by Duin
and Volgenant [7] for |P| > 2. Balakrishnan et al. [3] have proposed several net-
work flow based models for this latter problem setting and have compared the linear
programming bounds of the proposed formulations. In Balakrishnan et al. [2], the
authors have tested a dual ascent method on the model with the strongest linear
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programming bound. A more recent approach based on a different formulation is
described in Gouveia and Telhada [12]. The TLND problem belongs to a class of
problems with a tree-tree topology. The reader is referred to [9] where several vari-
ants of related problems such as star-tree, tree-star and star-star problems as well as
other variants of tree-tree problems are described.

The previous studies on TLND do not incorporate additional constraints. As far
as we know, the three exceptions are described in [10, 11, 8]. In the first one, the
authors considered the TLND with weighted hop constraints defined as follows:
given natural numbers w1 and w2, our goal is to construct a two-level minimum
spanning tree such that for each node k, the unique path from the root to k contains
a weighted number of primary and secondary edges (with weights w1 and w2, re-
spectively) which does not exceed H. In [11] the two-level minimum spanning tree
problem with secondary distance constraints stating that each secondary node must
not be too far from the primary network, is considered. In the latter work [8], the
authors studied the connected facility location problem (ConFL) wich is a TLNDF
variant with a tree-star configuration. In [16] a hop constrained variant of connected
facility location has been studied.

For a literature overview on capacitated network design problems with two tech-
nologies, we refer to a recent work of Costa et al. [5], where a problem has been
studied with capacities on edges and with fixed installation and non-linear flow
costs. In Jongh et al. [13] a survivable network design problem with two technolo-
gies and facility nodes has been studied.

2 MIP Formulations for the Two Level Network Design Problem

In this section we describe cut based formulations for the TLNDF. We start by pre-
senting a formulation of the original TLND problem without modeling the facility
opening costs.

Directed Graphs

It is well known that for rooted spanning or Steiner tree problems, models with
a stronger linear programming bound are obtained by solving the problem on a di-
rected graph (see, e.g., Magnanti and Wolsey [17]). Thus, we will work on a directed
graph G = (V,A) that is obtained from the original undirected graph G = (V,E) as
follows: For each edge e = {i, j} ∈ E we include two arcs i j and ji in A with the
same cost of the original edge. Since we are modeling an arborescence directed
away from the root node, edges {r, j} are replaced by a single arc r j only.

To model the TLND problem, we will use the following binary variables:

x1
i j =

{
1, if the primary cable technology is installed on arc i j
0, otherwise

∀i j ∈ A

x2
i j =

{
1, if the secondary cable technology is installed on arc i j
0, otherwise

∀i j ∈ A, j 6∈ P
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Observe that in any feasible solution there will be no secondary arcs entering a
primary node (i.e., x2

i j = 0, whenever j ∈ P). Therefore, variables corresponding to
such arcs will not be considered in our models. However, to simplify the notation,
we will allow them in the indexation of the summation terms.

For any W ⊂V we denote its complement set by W c =V \W . For any M,N ⊂V ,
M∩N = /0, denote the induced cut set of arcs by (M,N) = {i j ∈ A | i∈M, j ∈N}. In
particular, let δ−(W ) = (W c,W ) and δ−(i) = (V \{i},{i}). For a set of arcs Â⊆ A,
we will write x`(Â) = ∑i j∈Â x`i j, for `= 1,2, and (x1 + x2)(Â) = ∑i j∈Â x1

i j + x2
i j.

The examples described in the next sections use the following symbols: rep-
resents the root node, ◦ represents a Steiner node. � represents a primary customer,
4 represents a secondary customer. Whenever we solve a problem as the Steiner
tree problem, terminals are denoted by ♦.

2.1 Modeling the TLND Problem

The following formulation models the TLND with the set of primary nodes P (that
may also be an empty set), and the set of secondary nodes S without facility opening
costs.

(TLND) min ∑
i j∈A

(c1
i jx

1
i j + c2

i jx
2
i j)

x1(δ−(W ))≥ 1 ∀W ⊆V \{r}, W ∩P 6= /0 (x1)

(x1 + x2)(δ−(W ))≥ 1 ∀W ⊆V \{r}, W ∩S 6= /0 (x12)

(x1 + x2)(δ−(i))≤ 1 ∀i ∈V (1)

x1
i j,x

2
i j ∈ {0,1} ∀i j ∈ A (2)

The primary connectivity constraints (x1) ensure that for every primary node i, there
is a path between r and i containing only primary arcs. The secondary connectivity
constraints (x12) ensure that every secondary node is connected to the root by a
path containing primary and/or secondary arcs. The in-degree constraints (1) ensure
that the overall solution is a subtree and they are redundant if the edge costs are
non-negative.

This gives a valid model for the TLND. In [2, 3] a directed MIP formulation
based on network flows has been presented. It is easy to show that the set of feasible
solutions of the LP-relaxation of the TLND model is the projection onto the space of
(x1,x2) variables of this flow model. This result follows immediately from the max-
flow min-cut theorem. Thus, the two models produce the same linear programming
bound.

2.2 Modeling Facility Opening Costs

At each node in which a change of technology takes place, expensive facilities (e.g.,
multiplexors, splitters) need to be installed. In order to model these facility opening
costs, we will use variables zi:
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zi =

{
1, if a facility is installed in node i
0, otherwise

∀i ∈V

For a set W ⊆V , we will write z(W ) = ∑i∈W zi.

2.2.1 Basic Coupling Constraints

To ensure that a facility is open, whenever a change of technology takes place, we
request that every secondary arc jk ∈ A used in a solution is either preceded by
another secondary arc entering node j, or there is an open facility at node j. These
constraints are an adaptation of degree-inequalities proposed by Khoury et al. [14]
for the Steiner tree problem. Our problem can then be modeled as follows:

(TLNDF) min ∑
i j∈A

(c1
i jx

1
i j + c2

i jx
2
i j)+ ∑

i∈V
zi fi

z j + ∑
i j∈A,i6=k

x2
i j ≥ x2

jk ∀ jk ∈ A,k 6∈ P (3)

zi ∈ {0,1} ∀i ∈V (4)
(x1), (x12),(1), (2)

In this model, the indegree constraints (1) are not redundant even if the arc- and
facility costs are non-negative. These constraints namely prevent building of sec-
ondary cycles that would satisfy (3) without opening a facility at position j. Together
with connectivity constraints (x12), the basic coupling constraints (3) guarantee that
if a facility is installed at node j, then j is the root of a secondary subtree. This model
does not prevent from opening facilities along a secondary path, but this will never
be the case in an optimal solution.

2.2.2 Generalized x2− z Coupling Constraints

One can generalize the coupling constraints (3) in the following way: Let k be any
secondary customer or Steiner node and W ⊆V \{k}. Then, the generalized x2− z
coupling constraints can be written as follows:

z(W )+ x2(W c
k ,W )≥ x2(W,{k}) ∀k ∈V \ (P∪{r}),

W ⊆V \{k},Wk =W ∪{k}. (5)

Note that if W = { j}, for j 6= k, we obtain (3). In [10], the authors consider a similar
generalization technique of degree-constraints by Khoury et al. [14] in the context of
the two-level minimum spanning tree problem with weighted hop constraints. The
formulation obtained by replacing constraints (3) by (5) is denoted by TLNDF+.

The convex hull of feasible LP-solutions of TLNDF+ is (for some instances
even strictly) contained in the polytope defined by the LP-relaxation of the TLNDF
model.
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Fig. 1 Example for Lemma
1. All primary arc costs are
1, secondary arc and facility
costs are 1/2. r

2

3

4

5

6

7

Lemma 1. Let PTLNDF+ and PTLNDF denote the polytopes associated with LP-
relaxations of models TLNDF+ and TLNDF, respectively. Then, PTLNDF+ ⊆PTLNDF
and there exist instances for which the strict inequality holds.

Proof. Constraints (3) are contained in the set (5): (3) for jk ∈ A,k 6∈ P is derived
from (5) for W = { j}. Figure 1 shows an example where the strict inequality holds:
Consider the LP-optimal solution for TLNDF in which x1

r2 = x1
24 = 1 and x2

45 =
x2

57 = x2
46 = x2

67 = z4 = 0.5. υLP(TLNDF) = 3.25 but constraint (5) is violated for
W = {4,5,6} and k = 7, so υLP(TLNDF+) = 3.5 > υLP(TLNDF). ut

Constraints (5) can be rewritten in several equivalent ways which permit an easier
comparison with other inequalities. In fact, by adding x2(W c,k) to both sides, we
can rewrite (5) as follows:

z(W )+ x2(δ−(Wk))≥ x2(δ−(k)) ∀k 6∈ P,∀W ⊆V \{k},Wk =W ∪{k}. (x2-z)

2.2.3 Generalized x1− z Coupling Constraints

We have shown how to relate variables z and x2. We show next how to relate vari-
ables z and x1: For a given k ∈ S and W =V \{k} we can rewrite inequalities (x2-z)
as z(V \{k})≥ x2(δ−(k)). By using the in-degree constraint (1), we obtain:

z(V \{k})+ x1(δ−(k))≥ 1 ∀k ∈ S

The latter constraints can be generalized for subsets W ∩S 6= /0 in the following way:

z(W c)+ x1(δ−(W ))≥ 1 ∀W ⊆V \{r},W ∩S 6= /0 (x1-z)

These new inequalities describe the fact that for any subset W containing a sec-
ondary node, either there is a primary path between a node from W and r, or there
is an open facility in the complementary set W c.

Observation 1 The set of inequalities (x1-z) cannot replace the coupling con-
straints (3) in the model TLNDF, i.e. (x1-z) are not sufficient for modeling the
TLND problem with facility nodes. However, (x1-z) can be used to strengthen the
model TLNDF+.

We denote the model TLNDF+ extended by (x1-z) as TLNDF+
x1−z.

Next, we will show that connectivity constraints (x1), (x12) and both groups
of generalized coupling constraints are special cases of a more general group of
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constraints. These can be derived if we model the problem in a new graph obtained
by node-splitting as described below.

3 The Node-Splitting Model

We can model the TLNDF problem as the Steiner arborescence problem in a slightly
modified graph GNS = (VNS,ANS) with the root r′ and the set of terminals RNS, as
follows:

VNS :=V ′∪V ′′∪S where ANS :=A′∪A′′∪Az∪AS where
V ′ := {i′ | i ∈V}, A′ := {i′ j′ | i j ∈ A},
V ′′ := {i′′ | i ∈V}, A′′ := {i′′ j′′ | i j ∈ A},
S is the set of secondary nodes; Az := {i′i′′ | i ∈V},

RNS :=P′∪S where AS := {i′i | i′ ∈V ′, i ∈ S}
P′ = {i′ | i ∈ P}; ∪{i′′i | i′′ ∈V ′′, i ∈ S}.

The graph GNS is composed of several components: i) a subgraph G′ = (V ′,A′)
which corresponds to the primary network (it contains nodes and arcs that may be
included in the primary subtree); ii) a subgraph G′′ = (V ′′,A′′) that corresponds to
the secondary network (it contains nodes and arcs that may be contained in the
secondary subtrees); iii) arcs linking nodes in G′ to the corresponding copy in G′′

and representing potential facilities and iv) another copy of the secondary nodes
with arcs incoming from their representatives in graphs G′ and G′′ (see Figure 2).
Arc costs Ci j, i j ∈ ANS are assigned accordingly to the arcs in G′, G′′. The arcs
linking the two subgraphs are assigned costs Ci′i′′ := fi, for all i ∈V . To the arcs of
the set AS costs of zero are assigned.

If, for a primary node i∈P, its copy i′′ ∈V ′′ belongs to the optimal solution, there
will be no ingoing arcs into i′′ (with the only exception of i′i′′). Therefore, we can
reduce the size of GNS, by removing all ingoing arcs of primary nodes in V ′′. This
corresponds to setting x2

i j := 0 for all i j ∈ A such that j ∈ P, as already described
in Section 2. Observe that we need a third copy of secondary nodes in GNS, namely
the set S, since it is not clear for secondary nodes whether they will be connected
within the primary or the secondary subtree.

To provide an ILP model, we assign binary variables Xi j to all arcs i j ∈ ANS.
Denote by X(δ−(W̃ )) the sum of X variables that correspond to the arcs in the
directed cut (W̃ c,W̃ ) in GNS. Based on the classical cut set model for Steiner trees
(cf. [4]) we derive the following ILP formulation:
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(SA) min ∑
i j∈ANS

Ci jXi j (6)

s.t. X(δ−(W̃ ))≥ 1 ∀W̃ ⊆VNS \{r′},W̃ ∩RNS 6= /0 (7)

∑
i j∈A

(Xi′ j′ +Xi′′ j′′)≤ 1 ∀ j ∈V (8)

Xi j ∈ {0,1} ∀i j ∈ ANS (9)

Constraints (7) are the classical connectivity cuts, inequalities (8) state that of all
ingoing edges of both copies of a node in G at most one is allowed to be open.

Lemma 2. The TLNDF problem can be modeled as the Steiner arborescence prob-
lem with additional degree constraints on some node pairs on the graph GNS with
the root r′ and terminal set RNS.

Proof. We map each binary solution of formulation SA into the variable space of
TLNDF as follows: Xi′ j′ → x1

i j, Xi′′ j′′ → x2
i j and Xi′i′′ → zi. Let now X be an LP

optimal solution for SA. The mapping of X then satisfies all constraints of TLNDF:
Connectivity cuts (7) imply (x1) and (x12), together with degree constraints (8) they
ensure (1). Finally, constraints (3) are also satisfied since we have:

z j + ∑
i j∈A,i 6=k

x2
i j = X j′ j′′ +∑

i6=k
Xi′′ j′′ ≥ X j′′k′′ = x2

jk.

The last inequality is implied by (7) and (8). ut

Let Pro jx1,x2,z(PSA) denote the projection of the polytope obtained as the convex
hull of the LP-solutions of the SA formulation into the space of (x1,x2,z) variables.
In this projection, we set x1

i j := Xi′ j′ , x2
i j := Xi′′ j′′ for all i j ∈ A and zi := Xi′i′′ for all

i ∈V .

Theorem 1. The SA formulation is at least as strong as the previously defined for-
mulation TLNDF+

x1−z, i.e., Pro jx1,x2,z(PSA)⊆PTLNDF+
x1−z

.

To prove this result, we need to analyze the cut set inequalities defined in the SA
model and their projection onto the original graph G.

Lemma 3. Cut set inequalities (7) such that δ−(W̃ )∩AS 6= /0 are redundant in the
model SA.

Proof. Consider a cut set W̃ ⊆ VNS \ {r′}, W̃ ∩ S 6= /0, such that δ−(W̃ )∩AS 6= /0.
We will show that in that case, X(δ−(W̃ )) ≥ 1 is dominated by another cut set
inequality X(δ−(Ũ))≥ 1 where Ũ is defined as stated below. We need to distinguish
the following two cases:

i) If for all i ∈ S∩W̃ , i′i ∈ δ−(W̃ ) and i′′i 6∈ δ−(W̃ ), a dominating cut is given for
Ũ = W̃ ∪

⋃
i∈W̃{i′}.

ii) For all other W̃ the dominating cut is obtained by removing nodes i ∈ S from
W̃ if i′′ ∈ W̃ and i′ 6∈ W̃ and adding nodes i′ and i′′ to W̃ for i ∈ S∩W̃ such that
i′, i′′ 6∈ W̃ . ut
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a) b)

4
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1

2

3

4’

r’

1’

2’

3’

4”

r”

1”
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3”

2

3

(x1)

(x12-z)

(x1-z)

Fig. 2 a) Instance of TLNDF; b) Transformed instance and illustration of cuts (x1) for W = {1},
(x1-z) for W = {2,3,4} and cuts (x12-z) for W ′ = {3} and W ′′ = {3,4}

We will refer to the cut set inequalities such that δ−(W̃ ) ∩ AS = /0 as the non-
dominated cut set inequalities.

Generalized Cut Set Constraints

We will now define the generalized cut set constraints for the TLNDF that are ob-
tained by projecting the non-dominated inequalities among the ones in (7) into the
space of (x1,x2,z). For an arbitrary cut set W̃ ⊂VNS \{r′}, W̃ ∩RNS 6= /0, let us denote
the projected subsets of the original graph G as follows:

W ′ = {i ∈V | i′ ∈ W̃} and W ′′ = {i ∈V | i′′ ∈ W̃}

Then, the projected cut set inequalities (7), that we will refer to as generalized cut
set constraints, can be written as:

x1(δ−(W ′))+ x2(δ−(W ′′))+ z(W ′′ \W ′)≥ 1 r 6∈W ′,W ′∩W ′′∩S 6= /0
or W ′∩P 6= /0. (x12-z)

Observe that all the previously studied inequalities are special cases of this con-
straint (see Figure 2):

i) If W ′′ = /0, we obtain the primary connectivity constraints (x1).
ii) If W ′ =W ′′, we obtain the secondary connectivity cuts (x12).
iii)If W ′′ =V , we obtain the generalized coupling constraints (x1-z).
iv)For a given k ∈ S, and a subset W ⊆ V \{r,k}, the generalized (x2-z) constraint

corresponds to (x12-z) for W ′ = {k}, k ∈ S, and W ′′ =W ∪{k}.
This implicitly proves Theorem 1, i.e., the projection of every feasible LP-solution
of the formulation SA is also feasible to TLNDF+

x1−z.
We conclude this section by noting that even more general classes of inequalities
can be obtained by considering non-trivial cases in which W ′∩W ′′ 6= /0,W ′,W ′′.

Lemma 4. The generalized connectivity constraints (x12-z) can be separated in
polynomial time.
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To separate the constraints (x12-z), one needs to apply the max-flow algorithm on
the splitted graph GNS as described in the next section.

4 Computational Study

In this section we report details of the implementation of our Branch-and-Cut algo-
rithm, how we derived the set of benchmark instances and the computational results
we obtained.

4.1 The Branch-and-Cut Algorithm

To implement our models, we used the Gurobi [1] Branch-and-Cut framework, ver-
sion 3.0.2. All experiments were performed on a Intel Core2 Quad 2.33 GHz ma-
chine with 3.25 GB RAM, where each run was performed on a single processor.

4.1.1 Initialization

As the Gurobi MIP solver requires a compact model for initialization, we used
the following Miller-Tucker-Zemlin connectivity constraints (10)-(13) and trivial
degree-constraints (14):

ur = 1 (10)

|V |(x1
i j + x2

i j)+(|V |−2)(x1
ji + x2

ji)+ui−u j ≤ |V |−1 i j ∈ A, j 6∈ P (11)

|V |(x1
i j)+(|V |−2)(x1

ji)+ui−u j ≤ |V |−1 i j ∈ A, j ∈ P (12)

∑
i j∈A:i6=k

x1
i j ≥ x1

jk j 6= r (13)

∑
i j∈A

x1
i j ≥ z j j ∈ F \{r} (14)

In addition, our model comprises in-degree constraints (1) and coupling con-
straints (3).

4.1.2 Separation

Separating (x1) and (x12) Cuts:

We separate violated cut set inequalities (x1),(x12) and (x12-z) in every node of the
the Branch-and-Bound tree (BnB). To obtain inequalities (x1), we solve a maximum
flow problem on the graph G = (V,A). The capacities on each arc are set to the value
of the x1-variable for the respective arc in the current fractional solution. Cut set
inequalities (x12) are obtained in a similar fashion. The capacities are equal to the
sum of variables x1 and x2 for each arc.

Separating (x12-z) Cuts:

To obtain violated constraints of the largest and strongest group (x12-z), we solve
the maximum flow problem on the splitted graph GNS. The weights for arcs in A′,
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A′′ and Az are set to the value of the corresponding variable in the current fractional
solution. For arcs in AS, the weight is set to 1, as cuts containing these arcs are
dominated by others (cf. Lemma 3).

General Settings:

To improve the computational efficiency of our separation, we search for nested and
minimum cardinality cuts. To do so, all capacities in the respective graph are in-
creased by some ε > 0. Thus, every detected violated cut contains the least possible
number of arcs. The LP is resolved after adding at most 50 violated inequalities of
type (x1), (x12) or (x12-z). Finally, we randomly permute the order in which cus-
tomers are chosen to find violated cuts. To ensure comparability, we fix the seed
value for the computations reported in Section 4.3.

4.1.3 Primal Heuristic

We use a primal heuristic (PH) to find incumbent solutions. The PH is entirely car-
ried out on the graph GNS. It consists of the following steps:

1. Construct primary subtree: Primary customers are connected to the root node
by the arcs in the shortest path to the copy of that customer in V ′. For all nodes
taken into the primary subtree, ingoing secondary arcs are removed.

2. Construct secondary subtree:

a. Using zero costs on all arcs in the primary subtree, the shortest paths P(i′)
and P(i′′) from the root to i′ ∈V ′ and i′′ ∈V ′′ are calculated for all i ∈ S. Let
H ′(i) = |P(i′′)∩A′| and H ′′(i) = |P(i′′)∩A′′|.

b. Let Q = S. For all i ∈ Q such that H ′′(i) = 0 add P(i′) and remove i from Q.
c. Sort Q according to (H ′,H ′′) in decreasing order and repeat until Q = /0: Add

P(i′′) and remove i from Q.

3. Pruning of primary subtree: Superfluous leaves are iteratively removed from
the primary subgraph: Secondary customers, that are part of the primary and a
secondary subtree in which no facility is installed as well as Steiner nodes are
removed.

4. Pruning and repairing of secondary subtree: Superfluous nodes are removed
from the secondary subgraph and infeasible parts of the solution repaired: Steiner
node leaves and secondary customer leaves in V ′′ are iteratively removed, if their
respective copy in the primary subtree is used. For each secondary customer with
in- and out-going arcs in both A′ and A′′, we remove the ingoing arcs in A′′ and
open a facility at this node.

We use the information from the current best LP solution to adjust the weights for
calculating the shortest paths. We set the weight w for an arc in GNS to (1− v)c
where v is the corresponding variable and c is the initial cost.
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4.2 Instances

For our computational study we transform instances of the Steiner tree problem
(STP) using the following procedure:

• First, 30% of STP terminals are chosen as primary customers, the remaining 70%
are defined as secondary customers. The primary customer with the lowest index
is set as root node.

• The Steiner nodes in the STP instance are Steiner nodes in the TLNDF instance.
• As potential facility nodes we chose the root node, primary and secondary cus-

tomers.
• Primary edge costs equal edge costs of the STP instance. For each secondary

edge e, the cost c2
e is defined as qc1

e , where q is uniformly randomly chosen from
[0.25,0.5].

• Facility opening costs are uniform and equal 0.5 times the average primary edge
costs.

The parameters for generating instances have been carefully chosen so that triv-
ial solutions (e.g., optimal solutions that do not contain secondary subtrees) are
avoided. The sets B, C, D and E of the Steinlib library [15] have been used in our
computational study.

4.3 Results

We compared the computational performance of three different settings (two of
which using cuts derived from the splitted graph):

i) Model TLNDF, in which the basic coupling constraints (3) are inserted at once
and the (x1) and (x12) cuts are separated within the branch-and-bound (BnB)
tree.

ii) In the second setting, after all violated (x1) cuts have been detected, (x12) are
separated. Finally, after no more violated (x1) and (x12) cuts can be found, gen-
eralized connectivity constraints (x12-z) are separated.

iii)In the third setup, we refrained from separating inequalities (x12), i.e., af-
ter no more violated (x1) cuts can be found, generalized connectivity con-
straints (x12-z) are separated.

In a preliminary test we tested our three approaches on the instances of set B. The
maximum runtime was 5.28, 8.11 and 4.47 seconds respectively. As a consequence
we only give detailed results for the larger sets C,D and E.

In Table 1 we show the key figures of our computational study. The first column
indicates the group of instances, in columns 2, 3 and 4 we state the (maximum)
number of nodes, edges and terminals (i.e. union of primary and secondary cus-
tomers) of the largest instance of each group, respectively. In the third segment
of the upper part we show the number of instances in this group solved to opti-
mality within 1000 seconds of running time. The last segment shows the average
running times for the subset of instances that was solved to optimality by all three
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Table 1 Computational comparison of three different branch-and-cut settings.

#OPT t [s]
|V | |E| ≤ |T | ≤ i) ii) iii) i) ii) iii)

c01-10 500 1000 250 10 10 10 46.52 69.54 73.48
c11-20 500 12500 250 1 3 6 55.84 56.53 20.86
d01-10 1000 2000 500 10 9 10 180.61 253.66 271.11
d11-20 1000 25000 500 2 2 4 172.38 110.89 39.19
e01-10 2500 5000 1250 6 5 5 191.71 81.68 38.60
e11-20 2500 62500 1250 2 3 3 178.42 179.29 80.16

avg gap[%] iii) #OPT found in
|V | |E| ≤ |T | ≤ i) ii) iii) ≤ 1h ≤ 2h ≤ 24h

c01-10 500 1000 250 0.00% 0.00% 0.00% 10 10 10
c11-20 500 12500 250 5.93% 3.88% 1.05% 7 9 10
d01-10 1000 2000 500 0.00% 0.00% 0.00% 10 10 10
d11-20 1000 25000 500 4.19% 4.17% 0.75% 6 6 9
e01-10 2500 5000 1250 0.11% 0.15% 0.20% 6 8 10
e11-20 2500 62500 1250 5.78% 5.34% 5.35% 3 5 5

Table 2 Average running
times vs. graph density and
vs. number of terminals,
respectively. Values are nor-
malized according to the first
column in each segment.

|E|/|V | |T |
1.25 2 5 25 5 10 1

6 |V |
1
4 |V |

1
2 |V |

c01-20 1.0 2.5 18.3 206.7 1.0 1.0 12.2 23.0 100.4
d01-20 1.0 1.3 6.1 158.8 1.0 1.6 43.3 80.4 143.3
e01-20 1.0 345.7 699.9 1195.6 1.0 2.1 296.7 503.1 256.1

approaches within 1000 seconds. In segment three of the lower part we state the
average gaps of each instance group after 1000 seconds of running time. In segment
four we report the number of optimal solutions found by approach iii) within 1h,
2h and 24h, respectively. From the number of instances solved to optimality and the
average running times one can see, that for sparse graphs (.1-10) the approach
based only on connectivity cuts (x1) and (x12) is competitive to the generalized cut
set constraints. For denser graphs (.11-20) the two new approaches (namely ii)
and iii) involving (x12-z) cuts) perform much better: For instances with few arcs,
there is little difference in the LP bounds provided by the models with and without
constraints (x12-z). Constraints (x1) and (x12) are cheaper to separate, but as the
instances grow larger and denser, the advantage of better LP bounds provided by
cuts (x12-z) outweighs this.
Table 2 illustrates how the running time performance of the approach iii) depends
on the graph density (the second segment) and on the number of terminals (the third
segment). Instances C, D, and E have been divided into groups according to their
density (|E|/|V |) and the number of terminals (|T |), respectively. We observe that
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the average running times increase exponentially with the density and the number
of terminals.

5 Conclusions

For the TLNDF we have introduced several new families of valid inequalities com-
bining network design and facility location variables. The so-called generalized cut
inequalities (x12-z) are the strongest among those inequalities and can be derived
from a cut-set model for Steiner arborescence applied on a splitted graph. We have
seen that the separation of (x12-z) cuts is not only computationally tractable, but
it also outperforms the standard compact approach of modeling facility nodes. Fi-
nally, we have tested our approach on a set of 78 benchmark instances with up to
2500 nodes and 62500 edges. We have been able to solve 60 (66) instances to prov-
able optimality in less than 1h (2h). From the remaining 12 instances 6 were solved
optimally after 1 day and for 6 we obtained solutions less than 2% from optimum.
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