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We consider a network design application which is modeled as the two level network design problem
under uncertainty. In this problem, one of the two available technologies can be installed on each edge
and all customers of the network need to be served by at least the lower level (secondary) technology.
The decision maker is confronted with uncertainty regarding the set of primary customers, i.e., the set
of nodes that need to be served by the higher level (primary) technology. A set of discrete scenarios
associated to the possible realizations of primary customers is available. The network is built in two
stages. In the first-stage the network topology must be determined. One may decide to install the
primary technology on some of the edges in the first stage, or one can wait to see which scenario will
be realized, in which case, edges with the installed secondary technology may be upgraded, if necessary
to primary technology, but at higher recovery cost. The overall goal then is to build a spanning tree in
the first stage that serves all customers by at least the lower level technology, and that minimizes the
first stage installation cost plus the worst-case cost needed to upgrade the edges of the selected tree,
so that the primary customers of each scenario can be served using the primary technology.

Using the recently introduced concept of recoverable robustness, we address this problem of im-
portance in the design of telecommunication and distribution networks, and provide mixed integer
programming models and a branch-and-cut algorithm to solve it.
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1. Introduction

In some real-world settings, when planning an expansion of a telecommunication or power distribution

network, a network has to be built even before the set of customers is known with complete certainty. In

addition, if different services are offered to customers, uncertainty could be present regarding the type

of service that each of the customers needs. Usually, complete information regarding the underlying

demand patterns becomes available much later in the planning process. In that case, applying the

standard deterministic optimization by considering only one of the possible realizations of the input

data leads towards solutions that might not be optimal, or for that matter even feasible, for the final

data realization. A wait-and-see approach might also be unacceptable from the economical perspective,

since the infrastructure cost might significantly increase as time progresses (e.g., due to the bad weather

conditions or the increase of material costs).
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Two-stage stochastic optimization and robust optimization (RO) are two possible approaches to

deal with these kind of problems. In two-stage stochastic programming (see e.g. Uryasev and Pardalos

(2001)), the solution is built in two stages. In the first phase, a partial network is built which is

later on completed, upon the realization of the uncertain data. The objective is to minimize the cost

of the first-stage decisions plus the expected cost of the recourse (second-stage) decisions. However,

this approach relies on the accuracy of the random representation of the parameter values (such as

probability distributions) that allow to estimate the second-stage expected cost. When such accuracy

is not available, the use of deterministic uncertainty models arises as a suitable alternative (Kouvelis

and Yu (1997); Bertsimas and Sim (2003); Ben-Tal et al. (2010)). These models assume that the

input parameters belong to a known deterministic set instead of being random variables. In those

robust optimization (RO) approaches, single-stage decisions are made and the solutions that are sought

are immune (in terms of optimality and/or feasibility) to all possible realizations of the parameter

values. Clearly, such solutions may be over conservative, since the networks constructed minimize the

investment costs for the worst possible data realization.

Recoverable Robustness is a new modeling approach (see Liebchen et al. (2007, 2009)) that combines

the advantages of two stage optimization under uncertainty and robust optimization. Assume that the

network is built in two stages, but that we are still required to find solutions that are robust against many

possible realizations (scenarios) of the input data. Robustness in this context means that solutions are

expected to exhibit a guarantee of reasonable performance in terms of optimality and/or feasibility,

for any possible realization of the uncertain data. For this model, it is instructive to think there is a

possibility to recover the solution constructed in the first stage in a second stage (i.e., to modify the

previously defined network in order to make it feasible) once the uncertainty is resolved. The set of

allowed recovery actions and their cost may be known in advance for each of the possible data/scenario

realizations. These recovery actions are limited, in the sense that the effort needed to recover a solution

may be algorithmically (in terms of how a solution may be modified) and economically (in terms of the

cost of recovery actions) limited. Therefore, instead of looking for a solution that is robust against all

possible scenarios without allowing any kind of recovery (which is the case for many RO approaches,

see Ben-Tal et al. (2010)) we want a solution robust enough so that it can be “recovered” promptly

and at low cost once the uncertainty is resolved. This balance between robustness and recoverability

is what defines a recoverable robust optimization problem.

The Two-Level Network Design (TLND) problem (see Balakrishnan et al. (1994a,b)) models the

design of telecommunication and power distribution networks, in which two types of customers (re-

quiring two different levels of service) are taken into account. Primary customers require a higher

level of service and are required to be connected using a higher level (primary) technology; secondary
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customers can be connected either by the primary or a secondary, and cheaper, technology. In the

deterministic version of the TLND problem the set of primary customers and its complement, the set

of secondary customers, are known in advance. However, when long term decisions need to be made,

there is not always complete knowledge about the set of primary customers. When network design

and topology decisions are made, one is typically given a discrete set of possible realizations of this set

whose probability of occurrence cannot be estimated because not enough data is available. Under these

new conditions, decision makers might want to find a first-stage solution (a spanning tree comprised

by secondary and primary technology edges) that can be recovered in the second stage, and turned

into a feasible one, once the actual set of primary nodes becomes known. For this case we have defined

the recovery action as the late upgrade of a given edge from secondary to primary technology. For

each possible scenario, this upgrade incurs an extra cost, recovery cost, defined as the sum of all late

upgrades that are needed to ensure that all primary nodes are connected by the primary technology.

The Recoverable Robust TLND (RRTLND) problem searches for a solution that minimizes the sum of

the first-stage cost and the robust recovery cost of the second stage defined as the worst case recovery

cost over all possible scenarios.

1.1 Our Contribution and Outline of the Paper

The RRTLND problem is a new problem not studied previously in the literature. We first study the

problem on trees: we show that the RRTLND problem is NP-Hard even on a star with uniform upgrade

and recovery costs; we then propose a preprocessing procedure and a Mixed Integer Programming (MIP)

model with a linear number of variables for solving the RRTLND problem on trees to optimality. In

the second part of the paper we propose a MIP formulation for the problem in general networks

and develop a branch-and-cut algorithm to solve it. We develop problem-dependent techniques for

efficiently separating the underlying inequalities within the branch-and-cut framework. In addition, we

use a primal heuristic that relies upon the ideas of matheuristics and uses an embedded MIP for solving

the problem on trees. Finally, an extensive set of computational experiments are carried out in order to

assess (1) the performance of the proposed algorithm and its dependence on the problem parameters,

and (2) the nature and characteristics of the obtained solutions. The analysis includes a qualitative

study of the solutions in terms of Robustness and Recoverability and an interpretation and assessment

of the algorithmic performance. To complement this analysis, we also consider a Steiner-tree variant of

the TLND problem (on which non-customer nodes also exist in the network) and adapt the algorithm

to solve its robust counterpart.

In §1.2, the TLND problem is formally defined and a review of the main literature presented. In §2

the concept of Recoverable Robustness is presented, and the RRTLND problem is formally defined.

Results regarding the computational complexity of the RRTLND problem on trees are discussed therein
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and a new MIP model is shown. A MIP formulation for the RRTLND problem on general graphs

together with the elements of our branch-and-cut approach is described in §3. In §4 the Steiner tree

variant of the TLND problem, the Two-Level Steiner Tree (TLStT) Problem, is defined and a MIP

formulation is presented for its Recoverable Robust counterpart (RRTLStT). In §5 we present and

analyze the computational results obtained for two sets of benchmark instances for the RRTLND

problem and for the RRTLStT problem. Conclusions and final remarks are drawn in §6.

1.2 The Two-Level Network Design Problem

In this section we provide formal definitions of the TLND problem and give a review of the previous

literature on this problem.

The Two-Level Network Design Problem We are given an undirected connected graph G =

(V,E), |V | = n, |E| = m, with a set P ⊆ V , which corresponds to the set of primary nodes. On each

edge e ∈ E one of two given technologies (primary or secondary) can be installed. Correspondingly,

primary and secondary edge costs, ae and be are associated to each edge e ∈ E, ae ≥ be ≥ 0, where

ue = ae − be. Let X ∈ {0, 1}|E| be a binary vector such that Xe = 1 if edge e ∈ E is used in the

spanning tree and Xe = 0 otherwise; and let Y ∈ {0, 1}|E| be a binary vector such that Ye = 1 if on

edge e ∈ E primary technology is installed and Ye = 0 otherwise. Consequently, if Xe = 1 and Ye = 0,

secondary technology is installed in e. Let E(X) and E(Y) represent the subsets of edges associated

to X and Y, respectively. The TLND problem consists of finding a pair of vectors (X∗,Y∗) such that

f (X∗,Y∗) = min
(X,Y)∈D

 ∑
e∈E(X)

be +
∑

e∈E(Y)

ue

 (1)

where

D ={(X,Y) ∈ {0, 1}|E| × {0, 1}|E| | E(X) is a spanning tree in G,

E(Y) is a Steiner Tree connecting P, and Y ≤ X}.

Literature Review The history of the TLND problem begins with the introduction of the Hierar-

chical Network Design problem (HND) (see Current et al. (1986)), which is a special case of the TLND

problem with |P | = 2, i.e., we seek for a primary path, between the two primary nodes, embedded in a

spanning tree of G. Structural properties and reduction tests for the HND are presented in and A. Vol-

genant (1989). A Lagrangian-relaxation based heuristic is developed in Pirkul et al. (1991); in Sancho

(1995) a dynamic programming procedure is proposed; and recently, a branch-and-cut algorithm is

presented in Obreque et al. (2010).

4



The TLND problem was introduced by Duin and Volgenant (1991) where two heuristics and pre-

processing procedures are proposed. Several network flow based models for the TLND problem have

been proposed and compared in Balakrishnan et al. (1994b). The authors also propose a composite

heuristic that provides an approximation ratio of 4
4−ρ if the embedded Steiner tree is solved with an

approximation ratio of ρ < 2. In Balakrishnan et al. (1994a), the authors provide a dual ascent method

derived from a flow-based model from the previous paper. More recently, Gouveia and Telhada (2001)

and Gouveia and Telhada (2008) discuss alternative MIP formulations for the problem and solve them

using Lagrangian relaxation approaches.

The Multi-Level Network Design Problem (MLND) corresponds to the more general case in which

L types of customers and L technologies are available, and the goal is to find a subtree that enables

each node at level ` to communicate with other node of the same type, by using a tree built of edges of

type at most `, for each 1 ≤ ` ≤ L, L ≥ 2. The problem has been defined by Mirchandani (1996), who

called the problem the Multi Tier Tree Problem and provided a heuristic based on the one proposed

for the TLND problem in Balakrishnan et al. (1994a). In Chopra and Tsai (2002), a branch-and-cut

approach derived on a layered graph formulation of the problem has been applied to problems with

three to five levels.

There are also two variants of the TLND problem that combine the problem with the facility location

problem. The HND with transshipment facilities finds applications in the design of transportation

networks. It was introduced by Current (1988) where a heuristic is designed to solve the problem.

Recently, Gollowitzer et al. (2011a) introduced another variant of the problem with applications in

telecommunication networks, where transition facilities need to be installed at each node where change

of technology takes place. The authors propose a reformulation of the problem as a Steiner arborescence

problem with special intra-level degree constraints. The authors use a branch-and-cut to solve it. Other

extensions of the TLND problem that include additional hop or distance constraints have been studied

in Gouveia and Janssen (1998), Gouveia and Telhada (2005) and Gollowitzer et al. (2011b). In addition

to telecommunication applications the TLND problem appears in the design of Internet Protocol (IP)

networks (Chamberland (2010)) and electrical power distribution systems (Costa et al. (2011)).

2. The Recoverable Robust TLND (RRTLND) Problem

In this section we provide references to the recent applications of the recoverable robust optimization,

define the RRTLND problem and study the properties of the problem on trees.

Recent Applications of Recoverable Robust Optimization In Liebchen et al. (2007, 2009) the

authors introduce the RRO and provide a general framework for optimization problems affected by
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uncertainty, while focusing on the applications arising in the railway scheduling. The use of RRO in

the context of railway planning applications is further discussed in Cacchiani et al. (2008); Cicerone

et al. (2009); Goerigk and Schöbel (2010); D’Angelo et al. (2011). Recently, the concept of RRO

has also been applied to other application areas as well. The recoverable robust knapsack problem

considering different models of uncertainty is studied in Büsing et al. (2011a,b). In the latter paper,

a combination of RRO with the Bertsimas & Sim RO approach is investigated. Formulations and

algorithms for different variants of the recoverable robust shortest path problem are given in Büsing

(2012). Finally, in Cicerone et al. (2011) a more general framework of the RRO is studied in which

multiple recovery stages are allowed. The authors apply the new model to timetabling and delay

management applications.

2.1 The Recoverable Robust TLND Problem

Suppose that in a given application of the TLND problem it is not known exactly which elements

comprise the set of primary customers P . Instead, we are given a finite set of scenarios K such that,

for each k ∈ K, there is a set P k ⊆ V of nodes corresponding to the primary customers if scenario k is

realized. Additionally, we are given a root node r such that r ∈ P k, for all k ∈ K. Root r represents,

for example, a central office, i.e., a connection to the backbone network.

A decision maker may decide to install the primary technology on edge e ∈ E in the first stage,

or to recover the edge in the second (recovery) stage by upgrading it from secondary to the primary

technology (in case scenario k is realized and set P k requires it). Hence, for each edge e and for each

scenario k, we also define the late upgrade (or recovery) cost rke ≥ ue = ae − be that needs to be paid if

secondary technology is upgraded on edge e in the second stage when scenario k is realized; as opposed

to ue being the regular (or first-stage) upgrade cost.

A feasible solution to our problem is a spanning tree over G composed of primary and secondary

edges such that the primary edges build a subtree embedded into the secondary one. In addition, for

each scenario k ∈ K, each of the customers v ∈ P k is served by the primary technology, i.e., there

exists a path between r and v along that tree, consisting of solely primary edges. Those edges can be

either installed in the first stage, or recovered in the second stage. Among all such solutions, we are

searching for the one that minimizes the overall installation cost in the first stage (given as the sum of

the costs of primary and secondary edges), plus the worst recovery costs, calculated over all scenarios

k ∈ K.

More formally, let X ∈ {0, 1}|E| be a binary vector as defined in §1.2. Let Y0 ∈ {0, 1}|E| be a binary

vector such that Y 0
e = 1 if on edge e the primary technology is installed in the first-stage and Y 0

e = 0

otherwise. Let Yk ∈ {0, 1}|E|×|K| be a binary vector such that Y k
e = 1 if the secondary technology

that was installed in the first-stage on edge e is upgraded into the primary one in scenario k ∈ K.
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Given a scenario k ∈ K and a first-stage solution
(
X,Y0

)
(X associated to a spanning tree of G

and Y0 ≤ X), the recovery cost is the minimum total upgrade cost needed to provide feasibility to(
X,Y0

)
by recovery actions Yk. This cost can be expressed as

min
Yk∈Y(X,Y0,k)

 ∑
e∈E(Yk)

rke

 ,

where Y
(
X,Y0, k

)
is the set of all possible late upgrades for pair (X,Y0) and the set of primary

customers P k. In other words, vector Yk expresses how to recover the solution
(
X,Y0

)
in scenario

k providing it feasibility. Clearly, recovery is only meaningful along the edges on which the secondary

technology has been installed in the first stage. Hence, for each k ∈ K, the set of all feasible recoveries

is given as:

Y
(
X,Y0, k

)
= {Yk ∈ {0, 1}|E|×|K| |E(Y0) ∪ E(Yk) is a Steiner tree spanning P k,

Yk ≤ X−Y0}.

Notice that, given the first stage decision, for each k ∈ K, the optimal recovery solution can be found

in O(n) time. The following second-stage objective function, R(X,Y0), expresses the robust recovery

cost and corresponds to the maximum recovery cost overall possible scenarios k ∈ K:

R(X,Y0) = max
k∈K

min
Yk∈Y(X,Y0,k)

 ∑
e∈E(Yk)

rke

 .

The Recoverable Robust TLND (RRTLND) problem is defined as follows

OPTRR = min{
∑

e∈E(X)

be +
∑

e∈E(Y0)

ue+R(X,Y0) | (X,Y0) ∈ {0, 1}|E| × {0, 1}|E|, (2)

E(X) is a spanning tree on G,

Y0 ≤ X and E(Y0) is connected }.

In Figure 1(a) an instance of the RRTLND problem with two scenarios is shown. In Figures 1(b)

and 1(c) optimal solutions for different cost structures are presented. In the first case, recovery (i.e., late

upgrade) costs are 50% more expensive than regular upgrade costs while in second case the difference

goes to 200%. This difference in the cost structure explains why in the solution shown in 1(b) there are

edges that are recovered in a second stage for each of the scenarios, while in the solution shown in 1(c) no

recovery is performed since it is cheaper to install primary edges in the first stage than recover edges in a

second stage. The cost of the first solution is given by OPTRR = 1×9+1×4+max{1×1.5, 1×1.5} = 14.5

and the cost of the second solution is given by OPTRR = 1× 9 + 1× 6 + max{∅} = 15.
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(a) Instance of the RRTLND problem. (b) Recovery costs are re = 1.5 ∀e ∈ E. (c) Recovery costs are re = 3 ∀e ∈ E.

Figure 1: Instance and optimal solutions for the RRTLND problem; node with symbol N corresponds to r,

nodes denoted by 3 are primary nodes in scenario k = 1 and nodes denoted by © are primary nodes in scenario

k = 2; for each e ∈ E, its primary and secondary costs are ae = 2 and be = 1, respectively. Dotted, bold, dashed

and dot-dashed edges correspond to E(X), E(Y0), E(Y1) and E(Y2), respectively.

2.2 The RRTLND Problem on Trees

In this section we study some properties of the RRTLND problem when the input graph G has a tree

topology.

2.2.1 Complexity of the RRTLND Problem on Trees

Theorem 1. Solving the RRTLND problem is NP-hard even if the input graph G is a tree, and all

regular and late upgrade costs are uniform.

Proof. Because the input graph is a tree, every edge in the graph will have at least secondary technology

installed. Therefore the optimization only needs to consider regular and late upgrade costs.

We will show the result by a polynomial-time transformation from the minimum multicut problem

that is NP-hard on trees, and, in particular, on stars (see Garg et al., 1997). The minimum multicut

problem on a star is defined as follows: we are given a star on a set of nodes V = {v, v1, . . . , vn}, v

being the central node, and a set of K source-sink pairs (uk, vk) such that uk, vk 6= v, for all k ∈ K. A

unit weight is associated to each edge. A multicut is defined as a set of edges whose removal disconnects

every pair of nodes from K. The minimum multicut problem consists of finding a multicut of minimum

weight. Garg et al. (1997) show that this problem with uniform edge weights is equivalent to the

minimum vertex cover problem on general graphs (i.e., each one being polynomially transformable to

the other). A set of vertices such that each edge of the graph is incident to at least one vertex of the

set is called vertex cover. Observe that the weight of a multicut on G is equal to the cardinality of

a vertex cover on a support graph H = (V \ {v}, EH), whose set of edges EH consists of undirected

edges e : {uk, vk}, for all k ∈ K. Let C denote the value of the minimum vertex cover on H. Without
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loss of generality, let us assume that the value of the vertex cover, C, is such that C ≤ n−1
2 . We will

now construct an instance of the RRTLND problem with K scenarios on G whose optimum coincides

with the minimum vertex cover on H: Edge (v, vk) in a multicut corresponds to node vk in the vertex

cover and vice versa. Let the upgrade costs in the first stage be ue = 1, for all e ∈ E, and let M = n/2

be the uniform second-stage upgrade cost, i.e., rke = M , for all e ∈ E, k ∈ K. For each k ∈ K,

let P k = {v, uk, vk}. We will now show that the optimal solution of the RRTLND problem on G

corresponds to the minimum multicut on G. Let us consider the possible values for the maximum

recovery cost R∗: (i) If there exists k ∈ K, such that the edges {uk, v} and {v, vk} were not purchased

in the first stage, then the maximum recovery cost will be R∗ = 2M . (ii) If for all k ∈ K at least

one of the two edges is purchased in the first stage, but there also exist k̂ such that exactly one of

the two edges is purchased, then R∗ = M . Since for each scenario k ∈ K, at least one of the edges

{uk, v}, {v, vk} need to be installed in the first stage, the minimum cost first-stage solution that satisfies

this property is exactly the minimum multicut solution on G for the set of pairs defined by K. Those

multicut edges correspond to the edges that need to be bought in the first stage, and therefore, the

total cost of such a constructed solution is upper bounded by C+M . (iii) Finally, if for all k ∈ K, both

edges are purchased in the first stage, R∗ = 0, but the first-stage cost is equal to n. It is not difficult

to see that the second solution will be the optimal one (recall that we chose H such that C < n/2)

since: C +M < 2M and C +M < n.

2.2.2 A MIP model for the RRTLND Problem on Trees

We now provide a MIP formulation for RRTLND problem on trees for which it is necessary to perform

an O (nK) preprocessing. For K = const , this formulation is of compact size. Furthermore, it involves

only binary variables associated with the installation of the primary technology in the first stage. Due

to the preprocessing, this model does not involve the variables associated to the second-stage decisions.

Preprocessing: Given G which has a tree structure, for each scenario k ∈ K we first solve the Steiner

tree problem with the set P k being the terminal nodes of that tree. We assume that on all edges in

G secondary technology is installed in the first stage, so that all edges of the Steiner Tree need to be

recovered in the second stage. Therefore, to find the optimal Steiner tree, we consider the edge cost

defined by rke , for each e ∈ E, for each k ∈ K. Let Pk be the set of edges corresponding to the optimal

Steiner tree, for k ∈ K, and let ωk =
∑

e∈Pk
rke be the recovery cost for that tree, assuming that there

were no primary edges in the first stage. Obviously, finding the optimal Steiner trees can be done in

O(n) time, for each k ∈ K.

Lemma 1. Let P =
⋂
k∈K Pk 6= ∅ denote the set of edges for which the recovery is needed over all

scenarios k ∈ K. Given that for all e ∈ E, k ∈ K we have rke ≥ ue, there always exists an optimal
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solution to the RRTLND problem on trees such that the primary edges are installed along all edges from

P. Further, the subgraph induced by P is connected.

Proof. Assume there exist an edge e′ ∈ P which is not primary in the first stage in any optimal solution.

Consider an arbitrary optimal solution. Let k′ ∈ K be the worst-case scenario that defines the robust

recovery cost. Without loss of generality, let k′ be the only scenario that maximizes the recovery

function. Because rk
′
e′ ≥ ue′ , by turning the edge e′ into primary in the first stage we would reduce

the cost of the optimal solution, which is a contradiction. Observe that an edge e′ is in P if and only

if the subtree rooted at one of its end points contains a terminal from P k, for all k ∈ K. Therefore,

if e′ is in P, so are all the edges of G between r and e′, and therefore the subgraph induced by P is

connected.

Hence, the optimal primary subtree of the first stage is a rooted subtree of G which is a superset

of P and a subset of E. Therefore, if P 6= ∅, we can shrink all the edges of P into the root node

and continue solving the problem on the shrunken tree. If P 6= ∅, we need to shrink the graph and

recalculate the values of ωk and obtain the corresponding sets Pk, for all k ∈ K.

In the MIP model presented below we will assume w.l.o.g. that P = ∅. Given that G is a tree

with a pre-specified root node, for each edge e : {u, v} ∈ E (u, v 6= r), we can uniquely determine

the predecessor edge e′, as the neighboring edge of e on the path between r and e. Let s ∈ {0, 1}|E|

be a binary vector such that se = 1 if a primary technology is installed in the first stage and se = 0

otherwise. The following formulation allows us to solve the RRTLND problem on trees:

f (s∗) = min
∑
e∈E

uese + λ (T.1)

s.t. se′ ≥ se ∀e ∈ E, e′ is predecessor of e : {u, v}, u, v 6= r (T.2)

λ ≥ ωk −
∑
e∈Pk

rkese ∀k ∈ K (T.3)

s ∈ {0, 1}|E|, λ ≥ 0 (T.4)

In the formulation (T.1)-(T.4) we only have one set of binary variables, s, and O(n+K) constraints.

Therefore, for a constant number of scenarios, this is a compact formulation. Constraints (T.2) force

first-stage primary edges to form a connected component rooted at r. Inequalities (T.3) model the

nested maximization problem associated with the robust recovery cost; if primary technology is installed

on edge e in the first stage, then its recovery cost is subtracted from ωk for those sets for which e is

supposed to be upgraded in the second stage (i.e., for e ∈ Pk).

This MIP model will be used in a matheuristic fashion for finding feasible solutions of the RRTLND

problem in general graphs. This will be the core of the primal-heuristic embedded into a branch-and-cut

approach framework that we discuss in §3.2.
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3. MIP Model and Branch-and-Cut Algorithm

Before we provide a MIP model for the RRTLND problem, we observe that for every feasible solution

of the problem, we can associate a rooted spanning arborescence consisting of a rooted primary sub-

arborescence embedded into the secondary one. In addition, for each k ∈ K, edges from E(Yk) can

uniquely be oriented, so that the set of directed primary edges from the first-stage solution, plus the

set of directed edges from E(Yk) builds a Steiner arborescence spanning P k. Henceforth, instead of

dealing with MIP models containing binary variables associated with edges of the graph G, we will

consider its bidirected counterpart, GA = (V,A), where A = {(r, i) | e : {r, i} ∈ E} ∪ {(i, j), (j, i) | e :

{i, j} ∈ E, i, j 6= r}.

3.1 MIP formulation for the RRTLND Problem

The MIP formulation investigated in this paper is based on directed cut-set inequalities. The LP-

relaxation of this model usually accomplishes good quality lower bounds, since many of facet-defining

inequalities can be projected out of the directed model for tree problems (see Grötschel et al., 1992).

Let x ∈ {0, 1}|A| be a binary vector such that xij = 1 if arc (i, j) ∈ A belong to the spanning

arborescence and xij = 0 otherwise, let y0 ∈ {0, 1}|A| be a binary vector such that y0ij = 1 if primary

technology is installed in arc (i, j) ∈ A in the first stage and y0ij = 0 otherwise. Let yk ∈ {0, 1}|A|×|K|

be a binary vector such that ykij = 1 if the secondary technology installed on arc (i, j) ∈ A is upgraded

into the primary one in scenario k ∈ K and ykij = 0 otherwise. We will use the following notation:

A set of vertices S ⊆ V (S 6= ∅) and its complement S̄ = V \S, induce two directed cuts: δ+ (S) ={
(i, j) | i ∈ S, j ∈ S̄

}
and δ− (S) =

{
(i, j) | i ∈ S̄, j ∈ S

}
; we write x (A′) =

∑
(i,j)∈A′ xij for any subset

A′ ⊂ A.

Vector x is associated with a directed spanning tree of GA (spanning arborescence) rooted at r if

it satisfies the following set of inequalities

x
(
δ− (S)

)
≥ 1 ∀S ⊆ V \ {r} , S 6= ∅, (3)

a vector y0 is associated with a directed arborescence of GA rooted at r if it satisfies

y0
(
δ− (S)

)
≥ y0

(
δ− (i)

)
∀i ∈ S, ∀S ⊆ V \ {r} , S 6= ∅, (4)

and a vector of recovery actions yk along with a vector y0 are associated with a directed Steiner

arboresence of P k for all scenarios k ∈ K if they fulfill(
y0 + yk

) (
δ− (S)

)
≥ 1, ∀S ⊆ V \ {r} , S ∩ P k 6= ∅, ∀k ∈ K. (5)

Constraints (3), (4) and (5) are called x-cuts, y0-cuts and scenario-cuts, respectively. As we

will describe in detail later, our branch-and-cut peforms at a given node of the branch-and-bound
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tree a separation procedure of x-cuts, y0-cuts and scenario-cuts by means of (i) the resolution of a

max-flow problem on a support graph induced by the Linear Programming (LP) relaxation and (ii) a

combinatorial enumeration of those cuts on a support tree also induced by the current LP relaxation.

The MIP model for the RRTLND problem reads then as follows:

min
∑
e∈E

beXe +
∑
e∈E

ueY
0
e + ω

s.t. ω ≥
∑
e∈E

rkeY
k
e ∀k ∈ K (6)

(3), (4), (5)

Xe = xij + xji Y 0
e = y0ij + y0ji Y k

e = ykij + ykji ∀e : {i, j} ∈ E,∀k ∈ K (7)

Xe, Y
0
e , Y

k
e ∈ {0, 1} ∀e ∈ E, k ∈ K (8)

3.2 Branch-and-Cut Algorithm

The MIP formulation based on cut-set inequalities for the RRTLND problem cannot be solved directly,

even for small instances, since there are an exponential number of x-, y0- and scenario-cuts. Therefore,

a more advanced and specific strategy should be designed and implemented to solve the RRTLND

problem. In this section we describe the branch-and-cut approach used for solving the problem. We

first explain different schemes designed to separate the directed cut-set constraints (i.e., (3), (4) and (5)).

Next, the initialization performed to improve the quality of the lower bounds of the initial MIP model is

described. Finally, we provide a description of the primal heuristic embedded within the branch-and-cut

framework that helps in establishing high-quality upper bounds early in the search process.

3.3 Separation of Cut-set Inequalities

Cut-set inequalities are usually separated using maximum-flow algorithms. Basic ideas of this sep-

aration for the RRTLND problem are provided below. In addition, we also explain two advanced

separation mechanisms that are called mixed and combinatorial cuts separation. The latter approach

uses the problem-specific structure to speed-up the separation process and improve lower bounds in

the earlier phase of the search process.

Basic Separation Procedures (Max-Flow Based Cuts) Violated cut-set inequalities can be

found in polynomial time using a maximum-flow algorithm on the support graph with arc-capacities

given by the current fractional solution
(
x̃, ỹ0, ỹk

)
. When separating x-, y0- and scenario-cuts, the

capacities of the support graph are set to be equal to the values of x̃, ỹ0 and
(
ỹ0 + ỹk

)
, respectively.

For finding the maximum flow in a directed graph, we used an adaptation of Cherkassky and Goldberg

(1994) maximum flow algorithm.
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The separation is performed in the following order: First, we randomly select a node from V \{r} and

if there is a violated x-cut separating v from r, we insert it into the LP (together with the corresponding

set of nested and backward cuts, see the explanation below) and resolve the LP. After that, we attempt

to find violated y0-cuts. This time, we perform the maximum-flow calculation between r and each

i ∈ V \ {r}, such that y0(δ−(i)) > 0. In the final phase, when no more violated x-cuts and y0-cuts can

be found, we search for violated scenario-cuts. For each scenario k ∈ K, we perform the maximum-flow

calculation between r and each i ∈ P k. By proceeding in this way we avoid inserting cuts that have a

greater likelihood of being weak, and dominated by others, and thus reduce the computational effort

of the separation.

Mixed Separation Because y0 ≤ x, if a set W ⊆ V \{r} induces a violated x-cut then it might also

induce a violated y0-cut, if there exist i ∈W such that y0(δ−(W )) < y0(δ−(i)). Because yk ≤ x−y0,

if there exists a scenario k ∈ K, such that W ∩ P k 6= ∅, the same set W also induces a violated

scenario-cut. Hence, within the separation process applied to x-cuts we can also separate y0-cuts and

scenario-cuts without solving another max-flow problem. We use these facts to develop a separation

procedure that we refer to as mixed separation. The outline of this procedure is given in Algorithm 1.

In this procedure, we call the maximum-flow algorithm MaxFlow (GA, x̃
′, r, v, Sr, Sv) that, for a given

directed graph GA, calculates the maximum flow between r and v with capacities x̃′. The algorithm

returns two subsets of nodes: Sr, r ∈ Sr and Sv, v ∈ Sv, such that the edges of the cut δ+ (Sr) and

δ−(Sv) induce the maximum flow. Inequalities associated to the set Sr and Sv are called forward and

backward cuts, respectively. Then, we continue recalculating maximum flows on the same graph GA, on

which the capacities of the edges from the two previously found cut-sets δ+ (Sr) and δ−(Sv) are set to

one. That way, we detect disjoint cuts and we reuse the previous maximum flow computation to speed

up the overall separation. The latter strategy is known as the nested cuts approach (see Ljubić et al.,

2006). Variable MAX-CUTS denotes the number of cuts to be inserted before the LP is resolved. In

our implementation MAX-CUTS was set to 25.

Finally, we apply two variants of the mixed cut separation. The first one is described in Algorithm 1:

whenever we detect a violated x-cut, we also add corresponding violated y0-cuts and scenario-cuts.

On the other hand, when performing a separation of y0-cuts in a later phase, we basically use the same

idea to add violated scenario-cuts, whenever a violated y0-cut is detected.

Combinatorial Cuts The separation of combinatorial cuts relies on the following idea: if we would

know the structure of the optimal spanning tree built in the first stage, for finding the optimal recov-

erable robust solution it will be sufficient to consider the cut-sets associated with the edges of that

tree. Let T̃ = (Ṽ , Ã) denote the rooted spanning arborescence associated with x-variables of the
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Algorithm 1 Mixed Separation

Input: Graph GA = (V,A), fractional solution
(
x̃, ỹ0, ỹk

)
1: Choose a random node v from V \ {r}
2: x̃′ = x̃
3: repeat
4: f = MaxFlow(GA, x̃

′, r, v, Sr, Sv)
5: Detect the cut δ+ (Sr) such that x̃′

(
δ+ (Sr)

)
= f , r ∈ Sr

6: if f < 1 then
7: Insert violated cut x

(
δ+ (Sr)

)
≥ 1 into the LP

8: ĩr = arg maxi/∈Sr ỹ
0
(
δ− (i)

)
9: if ỹ0

(
δ+ (Sr)

)
< ỹ0

(
δ−
(
ĩr
))

then

10: Insert violated cut y0
(
δ+ (Sr)

)
≥ y0

(
δ−
(
ĩr
))

into the LP

11: for all k ∈ K, S̄r ∩ P k 6= ∅ do
12: Insert the violated cut

(
y0 + yk

) (
δ+ (Sr)

)
≥ 1 into the LP

13: x̃′ij = 1, ∀(i, j) ∈ δ+ (Sr)
14: Detect the cut δ− (Sv) such that x̃′

(
δ− (Sv)

)
= f , v ∈ Sv

15: if Sv 6= S̄r then
16: Insert the violated cut x

(
δ− (Sv)

)
≥ 1 into the LP

17: ĩv = arg maxi∈Sv ỹ0
(
δ− (i)

)
18: if ỹ0

(
δ− (Sv)

)
< ỹ0

(
δ−
(
ĩv
))

then

19: Insert the violated cut y0
(
δ− (Sv)

)
≥ y0

(
δ−
(
ĩv
))

into the LP

20: for all k ∈ K, Sv ∩ P k 6= ∅ do
21: Insert the violated cut

(
y0 + yk

) (
δ− (Sv)

)
≥ 1 into the LP

22: x̃′ij = 1, ∀(i, j) ∈ δ− (Sv)
23: until f ≥ 1 or MAX-CUTS constrains added

24: Resolve the LP

optimal solution. Observe that the removal of an arc (j, `) ∈ Ã separates T̃ into two components:

Let V` be the set of nodes of the sub-arborescence rooted at `, and K` be the set of relevant sce-

narios, i.e., scenarios k ∈ K that need a connection between the root and some node from V`, i.e.,

K` = {k ∈ K | V` ∩ P k 6= ∅}. The values of the variables y0 and yk could then be determined by

solving the following Integer Program (IP):

min
∑

(i,j)∈Ã

uijy
0
ij+ max

k∈K
min

∑
(i,j)∈Ã

rkijy
k
ij (9)

s.t. (y0 + yk)(δ− (V`)) ≥ 1 ∀(j, `) ∈ Ã, ∀k ∈ K` (10)

y0(δ−(V`)) ≥ y0(δ−(i)) ∀i ∈ V`, ∀(j, `) ∈ Ã (11)

y0 ∈ {0, 1}|Ã|,yk ∈ {0, 1}|Ã| ∀k ∈ K (12)

Obviously, in this model there are only O(nK) constraints, and the associated sets V` can be determined

in O(n) time using a dynamic programming procedure. Furthermore, formulation (9)-(12) is equivalent

to formulation (T.1)-(T.4).

Since we do not know the structure of the optimal arborescence in the first stage, we try to heuris-

tically approximate it and generate cut-sets of type (10) and (11) on the graph G (with the heuristic

tree) and insert them into the model. Thus, we are able to insert O(nK) cuts into the LP, in O(mK)

running time. For good approximations of T̃ , this combinatorial cuts can bring a significant speed-up to

the separation procedure, especially in the early stages of the cutting plane algorithm. In Algorithm 2
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Algorithm 2 Combinatorial Cuts

Input: Graph GA = (V,A), T̃ =
(
Ṽ , Ã

)
a spanning arborescence of GA, fractional solution

(
x̃, ỹ0, ỹk

)
1: L =

{
v ∈ Ṽ | δ+ (v) = ∅

}
2: for all ` ∈ L do
3: V` = {`}
4: K` =

{
k ∈ K | ` ∈ P k

}
5: repeat
6: Chose ` ∈ L

7: Let j be the parent of ` in T̃ , i.e., (j, `) ∈ Ã
8: if ỹ0j` < 1 then
9: for all k ∈ K` do

10: if
(
ỹ0 + ỹk)(δ−(V`))

)
< 1 then

11: Insert the violated cut
(
y0 + yk)(δ−(V`))

)
≥ 1 into the LP

12: Kj = K` ∪ {k ∈ K | j ∈ P k}
13: Vj = V` ∪ {j} ; L = L\{`}; L = L ∪ {j}
14: until L = {r}

the outline of the procedure is presented. The main idea of the algorithm is to recursively generate

sets V` and K` and insert the violated cuts into the current LP. We start with the leaf nodes of T̃ and

process the arborescence in a bottom-up fashion until reaching the root node. Whenever we process

an arc of T̃ , we insert violated cuts into the current LP. In total, each edge from G is “visited” at most

twice and therefore, the total running time of this procedure is at most O(mK).

Combinatorial cuts are separated together with y0-cuts and before the (more time consuming)

separation of scenario-cuts is performed. To approximate the tree T̃ , we run the minimum spanning

tree algorithm on G with edge weights set to

we = be min{(1− x̃ij) , (1− x̃ji)} for each e : {i, j} ∈ A, (13)

where x̃ is the value of the current fractional solution.

Combinatorial cuts are also added, whenever in the current LP, x is a binary vector.

3.4 MIP Initialization

In our branch-and-cut approach we first drop all x-, y0- and scenario-cuts, and add them in a iterative

fashion only when violated. However, to improve the quality of the lower bounds we incorporate

additional constraints to the initial model. Since for the RRTLND problem the x variables should

construct a spanning arborescence of G, the following in-degree constraints

x
(
δ−(i)

)
= 1, ∀i ∈ V, (14)

are valid inequalities that stress the tree-like topology of the corresponding solution. We also include

the constraints (
y0ij + ykij

)
+
(
y0ji + ykji

)
≤ 1, ∀(i, j) ∈ A, ∀k ∈ K, (15)
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Algorithm 3 Primal Heuristic

Input: Graph GA = (V,A), fractional solution
(
x̃, ỹ0, ỹk

)
, cost vectors a, b, u = a− b and r.

Output: A feasible solution
(
x̂, ŷ0, ŷk

)
for the RRTLND problem

1: T̃ = (VT̃ , E (x̃)) =spanningTree(G,w), where w is defined by (13).
2: for all k ∈ K do
3: Pk = steinerTree

(
P k, T̃

)
4: ωk =

∑
(i,j)∈Pk

rkij

5: Solve problem (T.1)-(T.4) with T̃ as input graph, cost vectors u and r, and vectors Pk and ωk.

6: Let s∗ be an optimal solution for (T.1)-(T.4) and A (x̃) be the arcs of E (x̃) oriented away from r. A feasible solution(
x̂, ŷ0, ŷk

)
for the RRTLND problem is defined by x̂ij = 1 if (i, j) ∈ A (x̃) and x̂ij = 0 otherwise, ŷ0ij = 1 if s∗ij = 1

and ŷ0ij = 0 otherwise, ŷkij = 1 if (i, j) ∈ Pk and s∗ij = 0 and ŷkij = 0 otherwise.

that correspond to subtour elimination constraints of size 2 for arcs with primary technology.

Finally, we also use combinatorial cuts described above as part of the initialization of the MIP

model. The arborescence T̃ is approximated by the minimum spanning tree considering edge weights

be, ∀e ∈ E. This initialization provides good initial lower bounds since many important cut-sets are

inserted into the model at the early stage of the cutting plane procedure without the resolution of a

maximum flow problem.

3.5 Primal Heuristic

An important component of our branch-and-cut is the embedded Primal Heuristic, whose pseudo-code

is given in Algorithm 3. The core of the heuristic is to solve an instance of the RRTLND problem on

an induced spanning arborescence T̃ of GA to optimality. For constructing the spanning arborescence

T̃ we use LP-values of x variables from the current LP relaxation. We run the minimum spanning tree

algorithm on G with edge weights defined by (13) (Step 1 of the algorithm).

In the loop (2-4) the preprocessing described in §2.2.2 is applied: We find the optimal Steiner Tree

(constructed by recovered edges) on T̃ considering terminal set P k. ωk denotes the corresponding total

recovery cost for each scenario. The main step of the algorithm is Step 5, where the MIP problem (T.1)-

(T.4) is solved. The feasible primal solution
(
x̂, ŷ0, ŷk

)
of our problem is obtained by mapping the

solution s∗ and the structure of T̃ as shown in Step 6. All arcs in T̃ define the spanning arborescence

associated with x̂. The values of ŷ0 correspond to the values of s∗ and the values of ŷk are calculated

by a simple inspection using the information contained in Pk, ∀k ∈ K, and s∗.

Although we know that the problem is NP-Hard, in practice the computational effort to solve the

problem is remarkably little. This makes the primal heuristic very effecive since feasible solutions are

quickly computed.

16



4. The Recoverable Robust Two-Level Steiner Tree Problem

In real-world applications, besides the customer nodes, there are additional nodes in the network

(corresponding to street intersections, for example) that do not require any service. The definition

of the TLND problem can be extended correspondingly. In this variant of the TLND problem that

we refer to as the Two-Level Steiner Tree (TLStT) problem, we are given a set R ⊂ V representing

the customers that have to be served either by primary or secondary technology. The set of primary

customers, P , is such that P ⊆ R. The goal is to find a minimum-cost Steiner tree in G spanning

all nodes from R and such that all nodes from P are connected with each other using the primary

technology. Using the notation presented before, binary vector X instead of being associated with a

spanning tree of G is now associated with a Steiner tree connecting nodes from R. The remaining

conditions remain the same (Y is associated with a Steiner Tree connecting P , Y ≤ X, and the

objective function is given by (1)). Those nodes that do not belong to R but that are spanned by a

solution given by a pair (Y,X) are called Steiner-nodes.

The RRTLStT Problem For the Recoverable Robust counterpart of the TLStT problem (RRTL-

StT) we asume that set R, R ⊂ V , is given in advance and that scenarios are such that P k ⊆ R, ∀k ∈ K.

As said before, R corresponds to the set of all nodes for which a service (primary or secondary) should

be provided.

The MIP formulation provided for the RRTLND problem can be easily adapted for the RRTLStT

problem by imposing that feasible values of vector x instead of being associated with a spanning

arborescence of GA, have to instead be associated with a Steiner arborescence of set R. This is

expressed by replacing x-cuts by

x
(
δ− (S)

)
≥ 1, ∀S ⊆ V \ {r} , S ∩R 6= ∅. (16)

This set of constraints, which we call xR-cuts, ensures that there is a directed path from r to every

node in R\{r}.

In the algorithmic framework outlined in §3.2 some procedures should be adapted for solving the

RRTLStT problem. In the MIP initialization, the “=” sign in (14) should be replaced by “≤”. In

the separation described in Algorithm 1, xR-cuts are separated instead of x-cuts; in this case instead

of selecting a random node v in V \{r} and performing the separation from r to v, the separation is

performed from r to every node in v ∈ R\{r}. When applying Combinatorial-Cuts, instead of giving

as input a spanning arborescence T̃ of GA, we give as input a Steiner arborescence which spans all

nodes in R; this arborescence is found by means of an algorithm that succesively solves shortest-path

problems from r to v ∈ R\{r} with arc costs given by (13) and merges these paths to conform an
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arborescence of GA spanning R. The same idea is used in our primal heuristic, in which instead of

finding an spanning arborescence of GA we find a Steiner arborescence connecting nodes in R.

5. Computational Results

In this section we report on our computational experience on two sets of benchmark instances that are

used to test the branch-and-cut algorithm for both, the RRTLND problem and the RRTLStT problem.

All the experiments were performed on an Intel CoreTM i7 (2600) 3.4GHz machine with 16 GB

RAM, where each run was performed on a single processor. The branch-and-cut was implemented

using CPLEXTM 12.3 and Concert Technology framework. All CPLEX parameters were set to their

default values, except the following ones: (i) All cuts were turned off, (ii) heuristics were turned off,

(iii) preprocessing was turned off, (iv) time limit was set to 1800 seconds, and (v) higher branching

priorities were given to y0 variables. We have turned these CPLEX features off in order to make a fair

assessment of the performance of the techniques described in §3.2.

5.1 Benchmark Instances

In our experiments we consider two classes of randomly generated instances. We have named them G and

SC. Their topologies resemble different geographic local structures of communication and distribution

networks.

G Instances For generating this group of instances we follow a similar scheme as in Johnson et al.

(2000), where the authors intended to generate instances that coincide with the street maps of real

instances used to model a local-access network design problem. The instances are generated as follows:

n nodes are randomly located in a unit Euclidean square. There is an edge e between two nodes if the

Euclidean distance between them is no more than α/
√
n, for a fixed α > 0. Coordinates are generated

with five significant digits. The secondary cost of an edge be corresponds to the Euclidean distance

between its extreme points multiplied by 104 and rounded to the closest integer; the primary cost ae

is calculated as (1 + β) be, where β ∈ [0, 1] is a pre-defined parameter and the recovery cost re = rke is

assumed to be equal for all k ∈ K and is set to (ε+ β) be, for a fixed ε ∈ [0, 1]. By setting, for example,

ε = 3 and β = 0.5, we have that primary technology is 50% more expensive than the secondary one and

that re/ue = (0.5 + 3) /0.5 = 7, i.e., the recovery costs are seven times more expensive than upgrade

costs. Both, primary and recovery costs are rounded to the nearest integer value. A single node is

randomly selected and chosen to be the root node r. For the RRTLND problem, in each scenario

k ∈ K, π% of nodes are uniformly randomly selected from V to constitute the set of primary nodes P k.

For the RRTLStT problem, the set R of all potential customers is constructed by uniformly randomly
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selecting ϕ% of all nodes from V . Similarly as for the RRTLND problem, π% of all nodes from R are

then uniformly randomly selected to build the set P k, for each k ∈ K.

In our experiments we consider the following parameter settings: β, ε ∈ {0.5, 1.0, 2.0, 3.0} (which

produces re/ue ∈ {7/6, . . . , 7}), π ∈ {10%, 20%, 30%}, and ϕ = 50%. Four instances were generated

for each combination of those parameters. Graphs of different size are considered as well. We choose

n ∈ {50, 75, 100, 250} and set α = 0.6. The value of α is incremented in steps of 0.001 until a connected

graph is obtained (in only one case, for n = 250, 0.6 was not enough to define a connected graph and

the real value of α was 0.613). Figure 2(a) illustrates an example of a graph with 250 nodes and α = 0.6

(which produces 1134 edges).

SC Instances These instances are generated on the basis of the well-known scale-free networks

(see Barabasi and Albert (1999)). Scale-free networks frequently appear in the context of complex

systems, including the World Wide Web, the internet backbone, infrastructure networks, airline connec-

tions, cellular networks, wireless networks, electric-power grids and many other contexts (see Strogatz

(2001); Boccaletti et al. (2006); Lim et al. (2010)).

These instances were generated as follows: Using the igraph library package, see igraph Project

(2012), a scale-free graph of n nodes is created using default settings. This actually produces a tree

since linear preferential attachment (power-law equal 1) is the default parameter for the generation.

The resulting graph is just an array of binary relations. In order to produce further input parameters

we use the yEd Graph Editor software (see yWorks (2012)) and draw the tree using the “organic”

layout. This layout determines node coordinates that are used to add additional edges and augment

the tree. A new edge between two nodes is added if its Euclidean distance is no more than α/
√
n.

The root node corresponds to the node with label 0 in the scale-free tree. Edge costs (ba, ae, re) and

scenarios for both the RRTLND problem and the RRTLStT problem are generated in the same way

as for the G instances.

In Figure 2(b) we show a scale-free tree with a layout fixed by yEd and in Figure 2(c)

the same instance augmented with a set of complementary edges (922 in total). For n =

50, 75, 100, 250, 500, 750, 1000 we use α = 0.1, 0125, 0.15, 0.2, 0.3, 0.35, 0.4 respectively. The other pa-

rameters were set as in the case of the G instances. Four instances were generated for each combination

of the parameters n, π, β and ε.

5.2 Robustness and Recoverability

In our computations we consider up to 30 scenarios which are created in advance. By doing this, when

considering problems with 10 scenarios, we simply use the first 10 scenarios out of those 30. The same
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(a) G instance with α = 0.6. (b) Scale-free tree with n = 250. (c) SC instance with α = 0.2.

Figure 2: Examples of the generated instances.

applies when considering 20 scenarios. The scenarios are identical for the different values of β and ε. By

proceeding in this way, it is easier to measure the impact of considering a larger number of scenarios.

Recall that recoverability is the capability of a first-stage solution to become feasible, once the

definitive data is known, by means of recovery actions. The way that robust first-stage solutions and

the corresponding recovery actions are calculated depends not only on the scenario structure but also

on the cost structure; the relations between ae, be and re. If the recovery costs re are high compared

to the first-stage upgrade costs ue = ae − be, then the solutions of the RRTLND problem are more

likely to have a larger first-stage primary tree. On the contrary, if recovery is relatively cheap, then

the optimal solutions will be comprised by a smaller first-stage primary tree and more recovery actions

will be performed (as in a wait-and-see approach). This can be seen when comparing the solutions in

Figures 3(a) and 3(b) of a 250 nodes G instance with 20 scenarios. In the first case, recovering an edge

in the second stage is seven times more expensive than installing a primary technology in the first stage

(which is 50% more expensive than secondary technology), consequently the first-stage primary tree

(bold edges, E
(
y0
)
), spans a large portion of the graph (186 nodes) and only a few recovery actions are

needed per scenario (
∣∣E(yk)

∣∣ / |K| = 4). The opposite occurs in the second case, when recovery cost

is slightly more expensive than the upgrade cost (which is four times more expensive than secondary

cost); in this case, the E
(
y0
)

component is smaller, spanning only 94 nodes, and much more recovery

actions take place in each scenario (
∣∣E(yk)

∣∣ / |K| = 37). The differences in the value of the objective

functions, OPTRR, can be explained similarly.

In Table 1 we report average values of the experimental results obtained for the RRTLND problem

for classes G and SC considering different number of nodes and different number of scenarios (columns

Class, n and |K| respectively). The presented statistics concern the solution characteristics as well

as indicators of the algorithmic performance. Column m corresponds to the average number of edges

among the instances created for each value of n. Column Gap(%) shows the average gap obtained after

the time limit of 1800 seconds is reached. This average is calculated over 64 instances per each group.

The corresponding average running times are shown in seconds in column Time(s). The average size of
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(a) β = 0.5, ε = 3, OPTRR = 50982,
∣∣E(y0)

∣∣ = 187,∣∣E(yk)
∣∣ / |K| = 4.

(b) β = 3, ε = 0.5, OPTRR = 96795,
∣∣E(y0)

∣∣ = 95,∣∣E(yk)
∣∣ / |K| = 34.

Figure 3: Examples of the solution of the RRTLND problem for a G instance with 250 nodes and α = 0.6,

|K| = 20, with different values of β and ε. Bold edges correspond to first-stage primary edges, dashed
edges are secondary edges that might be recovered in some scenarios.

the first-stage primary subtree of the optimal, or best known feasible solution, is indicated in column∣∣E(y0)
∣∣. The mean number of recovery actions performed in each scenario can be expressed by

∣∣E(yk)
∣∣

divided by |K|; the average values of this measure, for the optimal or best known solution, are reported

in column
∣∣E(yk)

∣∣ / |K|. In column #Opt the number of problems that can be solved to optimality

(out of 64 for each row) is shown.

A first-stage solution is expected to be more robust with respect to data perturbations if more

scenarios (possible data realizations) are taken into account. However, this robustness is not for free:

(i) on the one hand the complexity of the problem increases since a larger search space should be

considered; and (ii) on the other hand, the cost of the solutions, OPTRR, increases due to a possible

enlargement of the first-stage primary component or because a new worst-case scenario induces a

higher robust recovery cost. These phenomena are expressions of the so-called Price of Robustness

(see Bertsimas and Sim (2004)). The evidence of the price of robustness is given in Table 1. Increasing

the number of scenarios produces an evident deterioration of the algorithmic performance for both

classes of instances: (i) the average running times increase (this is more evident in the case of small

instances, which could be solved to optimality within the time limit); (ii) the average gap of the obtained

solutions deteriorates; and, therefore, (iii) the number of solution for which the proof of optimality is

obtained decreases. From the perspective of the solutions structure and the corresponding cost, from

columns
∣∣E(y0)

∣∣ and
∣∣E(yk)

∣∣ / |K| we can see the size of the first-stage primary tree is almost constant

for a given n, as well as the average number of recovery actions performed by scenario. The fact that the

averages of these values are almost constant for a given n means that our recoverable robust solutions

are protected against data perturbation and are able to balance robustness and recoverability: the
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robust first-stage solutions and their corresponding recovery actions depend more on the cost structure

(as explained in the example described in Figures 3(a) and 3(b)) than on the level of uncertainty.

Nevertheless, the absolute number of recovery actions (
∣∣E(yk)

∣∣) increases proportionally to |K|, which

means that the cost of the corresponding solutions is also likely to increase due to the augmentation

of the worst-case recovery cost induced by a new scenario.

Further analysis on the the impact of |K| in the algorithmic performance is presented in Table 2.

We report the statistics (the number of instances (#), min, median, mean and max values) of the

running times of those problems that are solved to optimality and the statistics of the gaps of those

problems that can not be solved within 1800 seconds; these statistics are summarized for all values of

n, β, ε and π, for the two classes of instances. Hence, each row summarizes statistics over 256 instances

of each group. As observed before, increasing the number of scenarios, |K|, clearly deteriorates the

capabilities of the algorithm: the median and mean running times of those problems that are solved

to optimality increase notably; while the median, mean and maximum gaps of those problems that

cannot be solved within the time limit, and their quantity also increases.

5.3 Algorithmic Performance

More specific performance measures are presented in the remaining columns of Table 1. In column

PH(%) we report the average gap between the initial upper bound (obtained by running Algorithm 3

in which w = b in Step 1) and the optimal, if known, or the best lower bound attained within the

time limit. The average number of nodes of the branch-and-bound tree is shown in column #BBN’s.

In columns #(3), #(4) and #(5) we summarize the average number of x-, y0- and scenario-cuts,

respectively, that are added during the optimization process.

As discussed in §3.2, one of the main features of our branch-and-cut is the embedded primal

heuristic. From the values presented in column PH(%) we observe that, in most cases, this average value

is below 10%, which reinforces our conviction that this procedure is crucial as part of the algorithmic

approach. These initial upper bounds can be obtained in a couple of seconds or even fractions of a

second for small instances.

For small instances (50 and 75 nodes in the case of G instances, and 50 nodes in the case of SC), we

notice that the number of nodes of the branch-and-bound tree increases with the number of scenarios.

However, for larger instances the situation is the opposite: an increased number of scenarios implies

a reduced value of #BBN’s. The more scenarios we consider, the more complex the problem is, i.e.,

solving the LPs takes longer which reduces the exploration of the search space performed within the

given time limit. In some cases, especially for the largest instances, only a few nodes are explored or,

even worse, no branching is performed and the optimization terminates while cutting planes are still

being added at the root node.
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Class n m |K| Gap(%) Time(s)
∣∣E(y0)

∣∣ ∣∣E(yk)
∣∣ / |K| PH(%) #BBN’s #(3) #(4) #(5) #Opt

10 0.01 31.27 17 5 7.62 367 25 131 1459 64
50 163 20 0.01 222.60 17 5 6.79 837 30 207 4314 63

30 0.01 230.31 18 5 7.5 642 28 181 5554 64
10 0.01 53.11 24 6 7.91 471 50 151 1986 64

75 257 20 0.09 540.85 25 6 7.02 1197 54 272 6407 56
30 0.24 1004.85 25 6 6.78 1416 57 264 9292 40

G 10 0.01 458.67 35 9 7.54 1491 105 292 4136 62
100 356 20 0.36 1470.20 35 10 6.61 1056 105 344 9066 23

30 0.83 1780.54 36 10 6.95 434 103 271 11426 2
10 0.86 1801.98 90 23 9.81 237 64 172 6861 0

250 1114 20 6.10 1803.51 111 23 11.26 15 36 37 7497 0
30 10.67 1805.13 119 23 15.28 5 24 13 6995 0
10 0.00 32.31 11 6 5.93 198 2 38 409 64

50 175 20 0.01 81.68 11 6 7.48 439 1 63 1162 64
30 0.01 150.98 12 6 6.45 769 1 84 2167 64
10 0.01 196.53 17 8 7.04 4016 15 109 1202 63

75 287 20 0.02 470.32 18 9 7.05 1460 15 151 3126 61
30 0.08 820.36 18 9 7.23 1486 15 185 5446 49
10 0.01 452.42 23 11 7.45 2490 13 149 1540 61

100 410 20 0.08 878.75 25 11 7.75 2731 11 179 3559 42
30 0.14 1177.93 24 12 7.7 1779 10 212 6096 32
10 0.07 1778.68 60 29 5.76 1313 59 288 3826 1

SC 250 932 20 0.17 1802.95 62 32 5.63 518 55 217 6342 0
30 0.26 1805.20 63 32 5.54 228 53 121 6896 0
10 0.06 1805.22 124 58 5.44 385 36 243 5689 0

500 2345 20 0.26 1813.14 126 63 5.26 16 20 93 7706 0
30 1.53 1816.07 142 65 5.36 1 15 68 9289 0
10 0.08 1810.55 189 87 5.39 132 38 210 7095 0

750 3460 20 0.95 1823.00 209 94 5.39 4 20 94 10051 0
30 3.50 1835.69 241 94 6.38 1 11 50 10622 0
10 0.16 1818.9 261 114 5.58 65 36 201 8792 0

1000 4658 20 2.34 1836.08 308 125 5.83 1 16 88 11970 0
30 6.64 1890.41 367 124 8.34 0 7 33 9911 0

Table 1: Solution characteristics and algorithm performance averages for different values of |K| for
classes G and SC (RRTLND problem, π = 0.1, β, ε ∈ {0.5, 1, 2, 3}).

With respect to the separation of x-, y0- and scenario-cuts, the first observation is that, for small

and medium size instances, when increasing the number of scenarios the number of x- and y0-cuts

that are added is approximately constant and, the number of scenario-cuts increases proportionally.

Additionally, and as it could be expected, for a given n and a given |K|, more scenario-cuts are added

than y0-cuts, and more y0-cuts are added than x-cuts. These behaviors are not verified for larger

instances, which is possibly due to the fact that in this case the separation is mainly performed at the

root node, while it is actually when branching, and exploring more nodes, that the separation reaches

a more stable behavior. Despite the differences characterized before, it is interesting to notice that,

in general, not many cutting planes are needed to obtain strong lower bounds, which is the case for a

large percentage of instances.

In Figure 4(a), we show the cumulative percentage of problems of class G, for different values of

|K|, for which we reach less than a given gap (%) within the time limit (for each number of scenarios

there are 256 problems to be solved in class G). This complements the information presented in Tables 1
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)

Class |K| # Min Median Mean Max # Min Median Mean Max

10 190 0.30 40.11 164.00 1690.00 66 0.02 0.25 0.84 12.39
G 20 142 2.56 189.40 372.80 1605.00 114 0.07 0.62 3.68 22.98

30 106 6.79 216.80 360.00 1594.00 150 0.07 0.78 5.01 29.60
10 189 0.72 60.00 194.20 1787.00 259 0.01 0.05 0.10 1.14

SC 20 167 4.60 125.60 278.70 1758.00 281 0.03 0.22 0.87 6.39
30 145 5.59 222.20 364.80 1535.00 303 0.03 0.90 2.56 13.86

Table 2: Running times and gap statistics of all instances of classes G and SC for different values of |K|
(π = 10, β, ε ∈ {0.5, 1, 2, 3}, RRTLND problem)
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(a) All instances of group G for different values of |K| (π =
10, β, ε ∈ {0.5, 1, 2, 3}, RRTLND problem)).
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(b) Influence of β and ε in the algorithm performance for
the 250 nodes group of class G (|K| = {10, 20, 30}, π = 0.1,
RRTLND problem).

Figure 4: Cumulative percentage of instances with a given gap (%) obtained within the time limit for the

RRTLND problem

and 2 about the average gap in relation to the number of scenarios. For 10 scenarios, we notice that

more than 95% of problems can be solved with less than a 2% gap within the time limit, and only a few

outliers present gaps greater than 5%. When considering problems with 20 scenarios approximately

85% of the instances are solved to within a 2% gap in the time limit. In this case, almost 10% of the

instances present a gap larger than 10%, which can be even higher than 20% for a few cases (less than

2% of the problems). However, when considering |K| = 30, the quality of the solutions significantly

deteriorates. More than 15% of the instances present gaps greater than 10% when reaching the time

limit, and these gaps are even higher than 25% for a few problems. For the instances of class SC, the

proposed algorithm seems to be more effective as can be deduced from Tables 1 and 2; for instances of

equal size to those of class G the obtained gaps are smaller and for larger instances the attained gaps

are better.

In §5.2 we have explained how the cost structure influences the relation between the robustness

of the first-stage solution and the corresponding recoverability in the second sage. We observe from

Figure 4(b) that the cost structure of a given instance also influences the difficulty of the problem. In
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)

Class π # Min Median Mean Max # Min Median Mean Max

10 87 6.01 368.80 555.80 1690.00 105 0.07 0.48 0.73 5.18
G 20 57 5.85 486.80 605.80 1630.00 135 0.02 0.47 0.60 3.95

30 64 6.13 506.30 649.10 1790.00 128 0.01 0.37 0.43 1.41
10 135 12.01 263.60 429.00 1787.00 57 0.03 0.21 0.23 0.67

SC 20 71 1.23 486.60 520.20 1785.00 121 0.01 0.23 0.32 3.22
30 62 0.97 369.10 524.00 1744.00 130 0.03 0.20 0.22 0.54

Table 3: Influence of the value of π on the algorithmic performance for instances with 100 nodes of
both classes G and SC ( β, ε ∈ {0.5, 1, 2, 3}, |K| = {10, 20, 30}, RRTLND problem).

this figure we show for the group of instances with 250 nodes of class G (considering |K| = {10, 20, 30}

and π = 0.1) the cumulative percentage of problems (%), for four combinations of β and ε, for which we

reach less than a given gap (%) within the time limit. We selected these values of β and ε so that the

recovery-upgrade ratio re/ue takes values from {7/6, 2.0, 3.0, 7.0}. It follows that when the recovery

costs are significantly higher than the upgrade costs, e.g., re/ue = 7.0 or re/ue = 3.0, the problem

turns out to be easier to solve. This can be explained by the fact that if recovery costs are expensive,

then the induced solutions tend to be comprised by a larger first-stage primary component (reducing

the number of recovery actions, see Fig. 3(a)). hese solutions have a closer resemblance to the easier

deterministic TLND problem with P =
⋃
k∈K P

k. On the other hand, when recovery costs are more

“comparable” with upgrade costs, e.g., re/ue = 2.0 or re/ue = 7/6, the structure of solutions has more

of a “wait-and-see” flavor: the first-stage primary component is smaller and a large number of recovery

actions is performed in the second stage (see Fig. 3(b)); this emphasizes the combinatorial nature of

the problem and it makes the optimization task harder.

In all the results analyzed so far, we have considered π = 10% (in each scenario 10% of the nodes

are primary nodes). However, and in order to provide an accurate evaluation of our algorithm we

have performed computations by also considering π = 20% and π = 30% . For both class G and

class SC we selected the group of instances with 100 nodes and tested the developed algorithm for

β, ε ∈ {0.5, 1, 2, 3} and |K| = {10, 20, 30}, considering π = 20% and π = 30%. For each value of π, 256

problems are solved. In Table 3 we report the statistics regarding the running times of those instances

that are solved to optimality and the statistics of the gaps of those that reached the time limit before

optimality. We observe that increasing the fraction of nodes that are primary in each scenario results

in a fewer number of instances that are solved to optimality. However, the gap statistics (over the

instances not solved to optimality) are similar for different values of π, in particular the median and

mean values remain in all cases below 1%. Hence we may conclude that the overall quality of the

solutions produced by our algorithm is not significantly affected for different values of π.

To give clear insights about the utility of the specific separation strategies designed for our algo-

rithmic framework (Mixed Separation and Combinatorial Cuts) we provide in Table 4 a comparison
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)

n Separation Strategy # Min Median Mean Max # Min Median Mean Max

Basic 56 2.51 129.00 290.70 1487.00 136 0.01 0.21 0.25 0.99
50 + Mixed Sep. 186 1.44 153.40 267.50 1550.00 6 0.08 0.24 0.25 0.50

+ Comb. Cuts 191 0.30 62.79 152.80 1589.00 1 0.46 0.46 0.46 0.46
Basic 56 4.23 342.50 463.00 1700.00 136 0.01 0.15 0.27 2.84

75 + Mixed Sep. 142 4.09 275.60 430.10 1712.00 50 0.05 0.45 0.60 3.01
+ Comb. Cuts 160 0.98 128.20 279.50 1594.00 32 0.07 0.45 0.63 3.02

Basic 40 27.13 457.40 650.60 1724.00 152 0.01 0.38 0.59 6.09
100 + Mixed Sep. 64 27.80 527.90 637.50 1773.00 128 0.03 0.59 0.89 5.14

+ Comb. Cuts 87 6.01 368.80 555.80 1690.00 105 0.07 0.48 0.73 5.18
Basic 0 - - - - 192 0.03 16.36 17.70 44.50

250 + Mixed Sep. 0 - - - - 192 0.02 3.69 7.99 30.65
+ Comb. Cuts 0 - - - - 192 0.02 0.99 5.88 29.60

Table 4: Impact of the branch-and-cut strategies on the algorithmic performance for instances of class
G ( β, ε ∈ {0.5, 1, 2, 3}, |K| = {10, 20, 30}, π = 10, RRTLND problem).

scheme that helps to evaluate the improvement of the algorithmic performance when including these

two procedures. We have selected the groups of instances of class G with 50, 75 and 100 nodes and

considered β, ε ∈ {0.5, 1, 2, 3}, |K| = {10, 20, 30}, π = 10; therefore, 192 problems were solved for each

value of n. Rows denoted by “Basic” correspond to the results obtained without Mixed Separation

and Combinatorial Cuts, rows “+Mixed Sep.” represent those results obtained when Mixed Separation

is included in the separation as described in §3.3, and in rows “+Comb. Cuts” we report the results

obtained when also the Combinatorial Cuts are included. The most important indicator is the number

of instances that can be solved to optimality and the average time needed to solve them. It turns out

that the performance of the algorithm notably improves when the specifically designed strategies are

included in the optimization process. For the group of instances with 250 nodes, only the gaps are

compared since no instance could be solved to optimality.

5.4 Results for the RRTLStT Problem

For the RRTLStT problem, we performed the same computational experiments explained in the previ-

ous section for the RRTLND problem. The corresponding adaptations of the branch-and-cut algorithm

were previously described in §4.

Robustness and Recoverability As expected, for the RRTLStT problem the Price of Robustness

is paid as well. As in the case of the RRTLND problem, increasing the number of scenarios results in

a deterioration of the algorithmic performance which can be seen from the columns Gap(%), Time(s)

and #Opt of Table 5 (equivalent to Table 1). In general, the average value of these indicators are

slightly better than those for the RRTLND problem.

A deeper analysis can be done on the basis of the results presented in Table 6 (equivalent to Table 2),

where statistics of the running times and of the gaps are presented for both classes of instances. We
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Class n m |K| Gap(%) Time (s)
∣∣E(y0)

∣∣ ∣∣E(yk)
∣∣ / |K| PH(%) #BBN’s #(16) #(4) #(5) #Opt

10 0.00 24.01 12 3 13.25 677 207 60 330 64
50 163 20 0.00 51.73 13 3 11.32 202 218 98 867 64

30 0.00 80.54 13 3 10.36 288 227 110 1369 64
10 0.00 78.52 18 4 13.62 260 318 125 1496 64

75 257 20 0.14 768.01 18 4 13.49 577 352 220 3973 49
30 0.38 1250.94 19 4 13.81 274 346 195 5470 33

G 10 0.01 341.89 22 6 16.65 637 732 338 1421 64
100 356 20 0.34 1154.46 22 6 16.31 653 726 365 3315 34

30 1.00 1435.43 22 6 17.05 323 687 287 4379 21
10 1.45 1801.59 55 14 19.24 204 505 0 4604 0

250 1114 20 7.58 1802.84 64 14 22.90 8 252 0 5157 0
30 13.24 1804.17 71 14 28.16 1 157 0 5262 0
10 0.00 21.77 7 3 3.93 251 167 27 96 64

50 175 20 0.00 31.07 7 4 4.01 58 165 32 209 64
30 0.00 42.73 8 3 4.15 154 163 47 356 64
10 0.00 62.38 10 5 5.34 124 371 57 302 64

75 287 20 0.00 120.31 10 6 4.63 352 364 77 631 64
30 0.01 155.90 10 5 4.7 282 373 87 1009 63
10 0.01 159.72 12 7 2.87 5192 501 84 318 63

100 410 20 0.01 276.45 12 7 3.09 3372 511 130 728 60
30 0.01 302.83 12 7 3.66 2013 496 136 1142 62
10 0.04 1050.02 29 18 4.15 1581 1782 315 1194 45

SC 250 932 20 0.12 1400.67 28 18 4.16 1025 1786 315 2347 25
30 0.29 1581.26 31 19 4.12 448 1733 245 3151 19
10 0.10 1778.98 61 37 5.98 972 425 0 4179 2

500 2345 20 0.19 1810.23 61 39 5.79 56 188 0 6262 0
30 0.72 1816.54 62 39 5.85 3 125 0 8074 0
10 0.18 1811.01 95 56 5.97 172 454 0 5344 0

750 3460 20 1.15 1821.24 101 57 6.35 1 164 0 8436 0
30 3.75 1830.60 111 60 8.02 0 94 0 10196 0
10 0.59 1817.01 134 68 6.73 95 570 0 7245 0

1000 4658 20 2.37 1835.08 141 76 7.73 1 193 0 11440 0
30 6.52 1855.02 160 81 10.83 0 103 0 12947 0

Table 5: Solution characteristics and performance measures for different values of |K| for classes G and
SC (RRTLStT problem, π = 0.1, β, ε ∈ {0.5, 1, 2, 3}).

observe that the the number of instances that are solved to optimality decreases and the gap of those

that are not solved to optimality increases when increasing |K|. These measures are quite similar to

those for the RRTLND problem in the case of G instances; but it seems that on average for the SC

instances the price of robustness is “lower” than for the RRTLND problem.

Just like the RRTLND problem, there is a clear balance of the robustness of the first-stage solutions

and their recoverability as it can be seen from the columns
∣∣E(y0)

∣∣ and
∣∣E(yk)

∣∣ / |K| of Table 5, which

means that our solutions for the RRTLStT problem are protected against higher levels of uncertainty.

In this case, once again the cost structure has more influence on the configuration of solutions than

the level of uncertainty.

Algorithmic Performance The quality of the initial upper bounds is reported in column PH(%)

in Table 5. For the class G the average values of PH(%) are considerably worse than those for the

RRTLND problem presented in Table 1 (the values are almost doubled). Nevertheless, for the case of
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)

Class |K| # Min Median Mean Max # Min Median Mean Max

10 192 2.86 61.07 148.10 1349.00 64 0.10 0.43 1.45 12.08
G 20 147 4.91 126.00 308.40 1728.00 109 0.08 1.39 4.73 22.27

30 118 6.27 136.30 371.60 1750.00 138 0.12 1.51 6.77 27.59
10 238 1.44 46.16 204.40 1708.00 210 0.01 0.08 0.27 3.48

SC 20 213 3.53 54.72 185.40 1552.00 235 0.02 0.31 1.04 6.58
30 208 4.85 78.50 224.70 1730.00 240 0.02 1.56 3.01 16.42

Table 6: Running times and gap statistics of all instances of classes G and SC ( β, ε ∈ {0.5, 1, 2, 3},
π = 10, RRTLStT problem)

class SC the first primal solutions are, on average, as good as for the RRTLND problem. The fact that

x, instead of defining a spanning arborescence on GA, actually defines a Steiner arborescence on R,

helps to explain this. The first support Steiner arborescence on which we calculate the corresponding

feasible solution is obtained by means of a heuristic procedure (shortest-path based heuristic using be,

∀e ∈ E) as explained in §4; while in the case of the RRTLND problem we find the primal solution on

the optimal spanning arborescence with costs equal to be, ∀e ∈ E.

The average number of explored branch-and-bound nodes (column #BBN’s) has, more or less, the

same order of magnitude and the same dependance on n and |K|, as in the case of the RRTLND

problem.

From columns #(16), #(4) and #(5), where the average numbers of inserted xR-, y0- and scenario-

cuts are reported, we notice that the separation process behaves differently from the one of the RRTLND

problem. Since the separation of xR-cuts is performed by solving a max-flow from r to all nodes in

R\{r} (instead of a max-flow from r to a single node in V \{r}), more xR-cuts are added compared

to the number of x-cuts that are added for the RRTLND problem. We observe that fewer y0-cuts are

inserted during the separation than for the RRTLND problem. This can be explained by the size of

the primary subtree built in the first stage which is much smaller for the RRTLStT problem.

In Figure 5(a) (which is equivalent to Figure 4(a)), we find further insights about the quality of the

solutions for the RRTLStT problem for class G and its dependence to |K|. The reported results are

analogous to those shown for the RRTLND problem for the same set of instances. The influence of the

cost structure, which depends on β and ε, on the algorithmic performance is outlined in Figure 5(b),

where results for the group instances with 250 nodes are shown. The impact of the cost structure on

the difficulty of the RRTLStT problem instances is similar to the one on the instances of the RRTLND

problem as seen in Figure 4(b).

6. Conclusions and Future Work

We studied a recoverable robust counterpart of the Two-Level Network Design problem addressing

uncertainty in the set of primary nodes, which we modeled by means of a set of discrete scenarios. We
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(a) All instances of group G for different values of |K| for the
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Figure 5: Cumulative percentage of instances with a given gap (%) obtained within the time limit for the

RRTLStT problem

showed that when the input instance corresponds to a tree, the problem remains NP -Hard and we

proposed a MIP formulation with linear number of variables for this case. For the case of general input

networks we developed a MIP formulation based on cut-set inequalities, and we designed problem-

oriented techniques to solve the problem within a branch-and-cut framework. A variant of the problem

was also considered and the exact approach was suitably adapted.

The proposed exact method was extensively tested on two classes of instances for both problems,

showing a fairly robust performance for all the considered instances. The impact on the algorithmic

performance of the specially designed techniques was emphasized. In light of the obtained results, we

stressed the influence of the cost structure of the problem on both the algorithmic performance and

the solutions’ structure. We showed how the price of robustness can be measured within our context

in terms of the worsening of the algorithmic performance when more robust solutions are attained.

The considered robust optimization model turned out to be appropriate for the problem and the

considered model of uncertainty. The obtained solutions are protected against higher levels of uncer-

tainty preserving a balance between their first-stage component and the corresponding second stage

recovery actions.
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