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Abstract

We consider a combinatorial optimization problem that models an expansion of fiber optic telecommunication networks.
Thereby, we are given a set of customers with potential gains of revenue and the set of edges with fixed installation costs. The
goal is to decide which customers to connect to a given root node so that the sum of edge costs plus the node revenues for the
nodes that are left out from the solution is minimized. The problem is known in the literature as the Prize-Collecting Steiner
Tree Problem (PCStT). In many applications it is unrealistic to assume that the gains of revenue or installation costs are known
in advance. In this paper, we extend this well-studied deterministic problem by considering the robust optimization approach in
which the input parameters are subject to interval uncertainty. To control the level of conservatism of the solution, we consider
Bertsimas & Sim robust optimization approach.

We propose a branch-and-cut approach to solve this problem to optimality and provide an extensive computational study on
a set of benchmark instances that are adapted from those previously used to solve the deterministic version of the problem. We
show how the price of robustness influences the costs of the solutions and the algorithm performance.

I. INTRODUCTION

Supose that a telecommunication company is in the process of defining an expansion plan of a fiber optic network in a
given area where a set of potential customers is located. The company is interested in knowing, given a planning horizon,
which subset of customers should be served in the network taking into account two elements: the prizes of the customers (that
correspond to potential revenues) and the infrastructure costs needed to connect them. This problem can be formulated as a
network optimization problem called the Prize-Collecting Steiner Tree Problem (PCStT) and it is the problem that we will
focus on in this paper.

When facing these types of strategic decisions, companies should consider the presence of uncertainty in problem parameters
as an inevitable feature of the decision-making process. In this particular case, customer revenues and connection costs are
uncertain parameters since they are affected by many external economic or even social factors. Consequently, uncertainty in
both edge costs and node prizes should be part of any decision model in order to obtain reliable or robust solutions from the
economic point of view. In our models, robustness can be seen as a guarantee of protection against data uncertainty.

II. THE PRIZE COLLECTING STEINER TREE PROBLEM
The term Prize Collecting was used for the first time by Balas, see [2], in the context of the traveling salesman problem.
However, it was in [7] where the PCStT has been introduced. A formal definition of the problem can be given as follows.
Given is an undirected graph G = (V, E) (|V| = n, |E| = m) with edge costs c. € R”" for all e € E, and with node prizes
py € RZ0 for all v € V. The PCStT consists of finding a tree T = (V(T), E(T)) of G, that minimizes the function

F@= > ct+ > po )

e€E(T) vEV\V(T)

For a feasible solution T, the function (1) corresponds to the sum of the costs c. of the edges in the tree, e € E(T), plus the
sum of the prizes p, of the nodes that are not spanned by the tree, v € VAV (T); this definition of the PCStT is known as the



Goemans and Williamson PCStT (GW-PCStT) [7]. Recalling the application mentioned above, the graph G = (V, E) would
correspond to the potential network where we want to find our expansion plan, so edges e € E are the possible connection links
with the corresponding construction costs c. and nodes v € V represent customers or street intersections with the corresponding
potential revenues p,, > 0 or p, = 0, respectively. By V},.~0 (|Vp,>0| = n’) we will denote the set of potential customers and
by V,,—o, the set of Steiner nodes.

The PCStT can be also defined as the problem of finding a tree 1" that minimizes
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Function 2 corresponds to the minimization version of the Net-Worth PCStT (NW-PCStT) which was introduced in [12].
Although functions (1) and (2) are equivalent in the sense that both produce the same optimal solutions, they are not equivalent
regarding approximation algorithms, see [12].

Approximation algorithms for the PCStT are discussed in [7], [11] and [12]. Heuristic procedures are implemented in [8],
[13] and [16]. The first published work on polyhedral studies for the PCStT is [15], where a cutting plane algorithm is proposed.
The cuts are efficiently generated when a violation of a generalized subtour elimination constraint (GSEC) is verified. In [14],
a branch-and-cut algorithm based on a directed cut-set MIP formulation has been designed and implemented. Several state-
of-the-art methods are combined and pre-processing techniques are used. The proposed procedure has significantly improved
the algorithm presented in [15]. The same set of benchmark instances has been solved by two orders of magnitude faster.
Optimal solutions have also been achieved for large-scale real-world instances that have been used in the design of optic fiber
networks. This work will play an important role in our algorithmic approach.

A. A Mixed Integer Programming Formulation for PCStT

To characterize the set of feasible solutions for the PCStT, i.e., subtrees of G, we consider a directed graph model and use
connectivity inequalities to guarantee connectivity of the solution, see [14].

We transform the graph G = (V| E) into the directed graph Gsa = (Vsa, Aga). The vertex set Vg4 = V U {r} contains the
nodes of the input graph G and an artificial root vertex r. The arc set Agx is defined as Aga = {ri | i € V,,<o} U A, where
A={ij,ji|e={i,j} € E}. A subgraph Ts4 of Gga that forms a directed tree rooted at r is called a Steiner arborescence
and is a feasible solution of the problem. We will use the following notation: A set of nodes R C Vs4 and its complement
R = Vga\R induce two directed cuts: 6+ (R) = {ji|i € R,j € R} and 6~ (R) = {ji | i € R,j € R}. Let z;;, Vij € A, be
a binary variable such that z;; = 1 if arc ¢j belongs to a feasible solution 7" and z;; = 0 otherwise, let y;, Vi € V' a binary
variable such that y; = 1 if node ¢ belongs to a feasible solution 7" and y; = 0 otherwise, and let T = (x,y). The set of
constraints that characterizes the set of feasible solutions of PCStT is given as follows:
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Let z., Ve € E, be a binary variable such that x, = 1 if edge e belongs to a feasible solution 7" and z. = 0 otherwise. The
connection between x and z variables is given by

Te = Zij + Zji Ve = {Z,j} ek (6)

The corresponding polytope .7 is given as the convex hull of the set of all feasible solutions satisfying these inequalities,
ie.,

T ={(x,y) € {0, 1}/EFVI| (x,y, 2) satisfies (3) — (6)}.

The constraints (4), also known as cut or connectivity inequalities are the directed counterpart of undirected GSECs used
in [15]. They ensure that there is a directed path between each customer ¢ such that y; = 1 and the root r. In-degree
constraints (3) guarantee that the in-degree of each node of the tree is equal to one. The root-out-degree constraint (5) makes
sure that the artificial root is connected to exactly one of the terminals. In addition, the following inequalities are used to
improve the quality of lower bounds of the LP-relaxation of the previous model:

Zrj S 1- Yis Vi < j? 1€ ‘/pi>0 (7)
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Constraints (7) are the so-called asymmetry constraints, they ensure that for each feasible solution the costumer vertex adjacent
to the root is the one with the smallest index. Constraints (7) are the flow-balance constraints, originally introduced for the
Steiner tree problem — they guarantee that a Steiner node cannot be a leaf in an optimal PCStT solution.



III. ROBUST OPTIMIZATION APPROACHES

In the PCStT a crucial information corresponds to the economic parameters of the problem: edge costs and node prizes.
In all the references mentioned before a fundamental assumption is complete knowledge about the value of these parameters,
so they are, essentially, deterministic models. However, in most of real-world applications this assumption may not hold and
uncertainty should be included as a critical feature of the model.

An alternative to model and include uncertainty in the decision process is Stochastic Optimization (see [17]). This approach
assumes that the distribution of the uncertain parameters is known and it typically generates a solution that optimizes a
measure of expected performance. However, it is known that - and it has been demonstrated very clearly in [3] - the solutions
of stochastic optimization problems can present a remarkable sensitivity to perturbation in problem parameters, turning the
solution into a sub-optimal, or even an unfeasible one.

In this paper we consider decision-making environments with lack of complete knowledge about the uncertain state of
data and instead of dealing with probabilistic uncertainty (as in Stochastic Optimization) we actually deal with deterministic
uncertainty [5]. In contrast to probabilistic models that treat the input parameters as random variables, in the deterministic
uncertainty models we assume that the input parameters belong to a known, deterministic set. This is in the core of many
real world applications and it is the motivation supporting Robust Optimization (RO), where the essential objective is to
find solutions that will have a reasonably good performance (of optimality and/or feasibility) for all possible realizations of
parameter values.

In the last 20 years several RO models have been proposed, responding to different motivations and conceptual definitions;
for a deep and extensive study on RO we refer the reader to [4]. In our opinion there are three main characteristics that define
the differences of RO models: (1) The nature of input data; whether the data belong to e.g., an ellipsoidal set or polyhedral set,
a closed interval, or a set of discrete scenarios; (2) If robustness is considered with respect to the value of the objective function
(robust solution), to the feasibility of the solution (robust model) or both; (3) The definition of reasonably good performance
of a solution, which is what determines the main features of the model.

In this paper we consider the RO concept by Bertsimas and Sim (B&S) defined in [5, 6]. This model is considered as one
of the most important references in the field of RO. Regarding the first characteristic mentioned above, this approach tackles
interval uncertainty. Regarding robustness, the B&S model allows to find solutions that are robust in terms of optimality and/or
feasibility of the solution. The definition of what is a reasonably good performance of a solution is given by the protection
against a pre-defined number of parameters that might be subject to uncertainty.

IV. FORMULATIONS FOR ROBUST PCSTT (RPCSTT)

In this paper, we consider interval uncertainty, which means that associated with each input parameter there is a closed
interval with its lower and upper bounds. Formally, in the case of the PCStT, an interval [c_,c}], such that 0 < ¢; < ¢, is
associated to each edge e € E, and an interval [p,,p;], such that 0 < p; < p; is associated to each customer v € V), ~o. To
simplify the notation, we will define 0 < p; < p;f for all nodes v € V, where p, = p;f = 0 for Steiner nodes v € V),,—.
Since we consider deterministic uncertainty, each input parameter can take any value from the corresponding interval without
any specific (or known) behavior and independently of the values taken by the other parameters. The lower interval values c_
and p; will be referred to as nominal values, i.e., they are the values to be considered if the deterministic PCStT is solved.
Deviations from the nominal values are defined as: d. = ¢ — ¢, for all e € FE and d, = p} — p,, for all v € V. In
the reminder of this section we will present a mathematical programming formulation for robust counterpart of the PCStT
considering the B&S model.

The PCStT under interval uncertainty has been considered before in [1]. The authors used an alternative RO model based
on a Risk/Cost trade-off concept defined in [9] and provided polynomial time algorithms for solving both PCStT and RPCStT
on 2-trees. In this context, our work is complementary since we consider a different RO model and we provide a more general
algorithmic framework focusing on graphs with general structure.

A. The B&S RPCStT

Suppose that a decision maker wants to solve the PCStT problem in which the input parameters, edge costs and node prizes,
are subject to interval uncertainty. In many practical applications it is unlikely that all of edge costs and/or node prizes will
present an uncertain behavior at the same time. Therefore, we assume that only a subset of input data is subject to uncertainty,
while the remaining parameters are fixed to their nominal values. More precisely, the decision maker may assume that only
I'g edges and 'y nodes 'y € [0,m] and T'y € [0, n']) will be subject to uncertainty, although she/he does not know exactly
which they are. Without loss of generality, we will assume that the values of I'g and I'y are integral.

The essence of the model is to find a solution that is “robust” considering all scenarios in which I'r edges and I'y, nodes
present an adverse behavior. If 'y = 0 and I'yy = 0, then uncertainty is ignored and the problem to solve is nothing but the
nominal problem, whereas if 'y = m and I'yy = 7/, i.e., full uncertainty is assumed, the most conservative robust solution



is sought. Considering the general RO mathematical programming formulation for Combinatorial Optimization problems with
interval uncertainty presented in [5], the B&S RPCStT can be formulated as:

ROPT(I'g,T'v) = mig d e 86T+ D py +80([Tv) ¢, 9
ecEr veV\Vr
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These last two functions are the so-called protection functions and they provide robustness to the solutions in terms of
protection of optimality in presence of a given level of data uncertainty, represented by I'r and I'y,. It is easy to notice that
an optimal solution for (9) can be interpreted as the one that minimizes the total nominal cost plus the cost of maximal I'g
deviations in the cost of the edges of the solution plus the maximal I'y, deviations in the prizes of the nodes that are not
spanned by the solution. If 'y = m and I'yy = 7/, the solution will obviously correspond to the optimal deterministic solution
in which all edge costs and node prizes will be set to their upper bounds. The flexibility provided by I'g and I'y is the main
advantage of the model from the practical point of view, because it allows the decision maker to include her/his preferences
in order to control the level of conservatism of the solutions. Setting 'y = m and I'yy = n’ leads to the most conservative
solutions, 'y = 0 and I'yy = 0 to a very optimistic one.

Since there are two types of binary variables that define the tree 7', the objective function in (9) contains two non-linear
nested maximization problems. To overcome this, it is necessary to use strong duality; let T* = (x*,y™) be an optimal tree
for (9). Consider the next subproblem:

BrTE) = max{z deuex) | Z Ue <T'g, 0<ue <1,Vee E} . (10)

ecE eckE

By strong duality, the former linear programming problem can also be written as:

B%5(Cg) = min {erE +> he | he + 0 >dexl, he >0Ve € E, 0 > o} . (11)
eckE
Similarly, the second nested problem can be also be written as the following linear problem:

By (Ty) = min{)\FE + ko [k A>dy (1-92), ko 20V0 €V, A > o} . (12)
veV

Combining (9), (11) and (12), we can formulate the B&S RPCStT as the following mixed integer programming (MIP) model:

ROPT(Tg,Ty)=min Y ciwe+0Tp+ Y he+ Y py (L—1,) + ATy + >k, (13)
eck ecE veV veV
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By following the same ideas presented before, the B&S Robust counterpart of the NW-PCStT is defined as
ROPTNw(Tg,Ty) = (xrirl)irelﬂ{zc ze+ fp(TE) — (Z piye — nV(Fv)>} (18)
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where 7y (Dy) =max {3, oy dotiol | Yopey uo < Ty, uy € [0,1]Vo € V). It is important to note that in the case of the
B&S Robust NW-PCStT, the nominal value of node prizes is the upper limit of the corresponding interval, p;” Vv € V, and not
the lower limit as it is in the case of the robust PCStT. It can be easily seen from (18) that larger values of I'y, will increase
the total value of the solution as it is expected in this RO model. An MILP formulation can be easily obtained by following
the same procedure explained for the PCStT.

It is known that for the deterministic case the connection between f(7) and fnxw (T') is given as fyw (T) = f(T)=>_ cy Po-
The next result provides further information about connections between these two versions of the problem for their robust
counterparts.

Observation 1: For a fixed value of Ty € [0,m], and T’y € {0,n'}, the robust counterparts of the PCStT and the NW-
PCStT are equivalent, i.e., they produce identical optimal subtrees. The following connection exists between the corresponding
objective values:

ROPTNw(fE, ) ROPT FE, va
veV



and
ROPTyw(T'g,n') = ROPT(T,0) = Y p,.
veV

Intuitively it seems that the robust counterparts of these problems are equivalent when taking I'y € [0,n'] for the PCStT
and I‘Q/ =n/ —T'y for the NW-PCStT. However, although this is true for the case described in the Observation 1, this does

not hold for 'y = {1,...,n’ — 1}. For a fixed value of I'z € [0, m], let us take, for example, I'y; = 1 which leads to
ROPT(Tp,1)= min > e me+ B (Tr)+ Y py (1—y) + max {dy(1 — )} (19)
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for the NW-PCStT. It is clear that (19) and (20) are not equivalent.

Although in this paper we present a MIP-based exact approach for solving the robust counterpart of the PCStT, it is also
possible to solve the RPCStT by successively solving (n’ 4+ 1)(m + 1) classical instances of the problem. The latter result
follows from the result given in [5] and its usefulness strongly depends on how efficient one can solve the deterministic version
of the PCStT.

The following lemma improves the previous result:

Lemma 2: Given 'y € [0,m] and a given I'y € [0,n'], the B&S Robust Counterpart of the PCStT can be solved by solving
(m —Tg+1)(n" —T'y + 1) nominal problems

ROPT(Tg,Ty) = min Geb,

a€{lg,....m+1}
be{l'v,...,n"+1}

where for a € {T'g,...,m+ 1} and b€ {T'y,....,.n" + 1}

b
G =Tgd, +Tvdy, + min (ZC -%‘e-f—z (de — da) $e+zpv Yo +Z(dv—db)(1_yv)>'

YT
(x,y) vev v=1

and nodes and edges are sorted in increasing order with respect to their deviations so that d;; < d;.
The result can be easily extended to the NW-RPCStT.

V. A BRANCH-AND-CUT ALGORITHM FOR THE RPCSTT

The MIP formulation (13) - (17) can not be solved directly, even for small instances, since there is an exponential number
of constraints of type (4); consequently, more sophisticated and specific techniques should be designed and implemented to
solve this model.

To solve the B&S RPCStT to optimality a Branch-and-cut algorithm is implemented using CPLEX 12.2 and Concert
Technology. The algorithm is an adaptation of the exact approach presented in [14] and its main feature is the separation
procedure applied to constraints (4). The algorithm can be used to solve both, NW-RPCStT and GW-RPCStT. However, due
to the space limitation, we will present computational results for the RPCStT only.

a) Initialization: The integer linear program initially contains all variables and the constraints (3), (5)-(8). In addition,
we explicitly insert the subtour elimination constraints of size 2:

zij +zji <yi, VieVaa\{r}, (i,5) € Asa

to avoid too frequent calls of the maximum flow procedure.

b) Separation: At each node of the branch-and-bound tree, these constraints are separated as long as they are violated by
the current LP-solution. For a given LP-solution (Z,§), we construct a support graph Gga with arc capacities set to 2;;, for
all ij € A. Then we calculate the maximum flow from the root node r to each potential customer node v € V,,,~¢ such that
Uy > 0. If this maximum flow value is less than y,, we have found a violated inequality (4), induced by the corresponding
min-cut in the graph Gga, and we insert it into the LP. For the calculation of the maximum flow we used an adaptation of
the maximum flow algorithm given in [10]. In addition, this separation randomly selects terminals and detects the violated
cut-sets using nested, back-flow and minimum cardinality cuts (see [14] for more details). We restrict the number of inserted
cuts within each separation callback to 100.

¢) Branching: Branching on single arc variables produces a huge imbalance in the branch-and-bound tree. Whereas
discarding an edge from the solution (i.e., setting x;; to zero) doesn’t bring much, setting the customer variable ¥, to one
significantly reduces the size of the search subspace. Therefore we set the highest branching priorities to variables v, v € V,,~0.



d) Further Settings: We used default CPLEX settings, with the only exception of the following parameters that have
been tuned during our preliminary experiments: the usage of primal heuristics and CPLEX cuts was turned off; the emphasis
was set to optimality.

VI. COMPUTATIONAL RESULTS AND CONCLUSIONS

In our computational experiments four sets of benchmark instances have been tested: P, K, C and D. These instances have
been used in most of the papers discussing algorithm design for the PCStT ([15],[14],[16]). Instances of the group P were
introduced in [12] — they are unstructured and designed to have constant expected degree and profit to weight ratio. Group
K are randomly generated geometric graphs designed to have a structure similar to street maps [12]. Groups C and D were
presented in [8]. They are derived from the instances of the Steiner tree problem in graphs provided in the OR-Library!.

Given an original instance P rob for the deterministic PCStT, the corresponding robust instance, named Prob-a-43, (« € [0, 1]
and 8 € [0, 1)) is derived as follows: the number of nodes and edges are left unchanged. Lower limits for intervals defining
edge costs and node prizes are set to the corresponding deterministic values c. and p,, i.e., c; = c. Ve € E and p, = p,
Vv € V. The upper limit of edge costs, ¢ is a value drawn uniformly randomly from [c., (1 + ) c.| Ve € E. Similarly,
the upper limit of node prizes, p;, is taken uniformly randomly from [p,, (1 + () p,] Vv € V. Parameters o and 3 allow to
control the width of the corresponding intervals and, consequently, the level of uncertainty of the problems.The algorithm was
run in a AMD Athlon(TM) 64 X2 Dual Core 3800+ 2.0 GHz machine with 1.00 GB in RAM.

Figure 1 illustrates the price of robustness [5], i.e., the changes of ROPT with respect to I'y and I'yy for instance
K400.10-0.5-0.5. As expected, the objective value ROPT is a concave function on I'g and I'y, which increases when
increasing the values of I'p and I'y,. For the instance K400.10-0.5-0.5, I'y seems to have more influence than I'g on the
behavior of ROPT up to values of I'p = 4, which can be explained by the fact that the construction of a solution depends
more on node prizes than on edge costs. From the ROPT axis in Figure 1, we can observe that the relative increase of
ROPT does not exceed 10% even for high values of I'y. This increase is smaller than what we would have expected since
both edge costs and node prizes were allowed to increase up to 50% of their nominal values (a« = 0.5 and 8 = 0.5). This is
an example of the robustness of the solutions and the protection provided by the model even under the high data uncertainty.
Another observation is that, although for instance K400.10-0.5-0.5 we have n’ = 50, only values of Iy in the interval
[0, 20] seem to produce different solutions, which means that I'y; = 20 is enough to provide robustness to the solutions. This
is explained by the size of the obtained solutions; in the case of this particular instance, no more than 20 customers nodes are
not connected for the obtained solutions and that is why only values of I'y, up to 20 might produce changes in the objective
function. A similar behavior was observed for the remaining instances as well.

We wanted to test the influence of parameters I'p and I'y, to the performance of the algorithm and to the increase of the cost
function. Therefore, we performed a study in which we considered settings with T'r € {0,5,10,25} and I'y, € {0,5,10,25}.
Tables I - IV summarize our computational results obtained on the set of instances derived from the groups c1-10, d1-d10,
K and P, respectively, with « = 5 = 0.1. Each entry in these tables represents an average value over a subset of corresponding
instances. For each group we show: the running time in seconds (t(s)), the number of inserted cuts of type (4) (#cuts), the
number of branch-and-bound nodes (#BBn), the number of edges (E(T")) and the number of terminals (R(7")) in the optimal
solution, and the relative increase of ROPT with respect to the optimal value obtained for the nominal cost (AROPT).

One can see how the value of ROPT increases with increasing values of I'p and I'y,. However, since these instances were
created considering « = 0.1 and 3 = 0.1 the relative increase is not as perceptible as in the case of K400.10-0.5-0.5.
We did not provide results for more values of I'r and I'y, since no interesting differences have been observed.

Information about the structure of the solutions can be read from columns E(7") and R(T'). Although the value of the
objective function increases, the structure of the solutions remains almost the same. For instances C and K, basically the same
number of customers remains connected despite the changes in 'y or I'y. In the case of D and P, there are minor variations
in the number of customers connected, but these changes are not relevant. This means that the solutions provided by the robust
model are able to resist data perturbations since they are likely to maintain their optimality even when allowing the higher
level of uncertainty.

Figure 2 illustrates the increase of the running time for instance K400.10-0.5-0.5 and smaller values of I'r. For values
of I'y > 20 and 'y > 50, our algorithm has not been able to find an optimal solution within a given time limit of 10000
seconds.

Comparing the running times provided in Figure 2 and in columns ¢(s) of Tables I - IV, one observes that the performance
of our exact approach it heavily affected by the values of I'y or I'y,. It can be seen that, despite the good performance of
the algorithm for the nominal problem, the running times can reach extremely high values for some values of I'p or T'y,
particularly for values of I'yy between 5 and 20. However, when considering values of I'y, greater than 20 and values of I'p
smaller than 5 it is possible to obtain more reasonable running times.

It is important to compare the two charts given in Figures 1 and 2. One can see that for the values of I'y between 0 and 20
the changes in the objective function are more dramatic, which means that the optimal solutions are also different. Therefore,

'OR-library: J. E. Beasley, http://mscmga.ms.ic.ac.uk/info.html
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Fig. 1. The value of the optimal solution depending on I'; and I'y, parameters for the instance K400.10-0.5-0.5.
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Fig. 2. The running times depending on I'; and 'y, parameters for the instance K400.10-0.5-0.5.

some values of I'p and I'yy can drastically affect the set of feasible solutions increasing the running times but also allowing
to find different solutions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we studied the PCStT problem with interval uncertainty associated to its parameters. To include and handle
this uncertainty we considered the B&S Robust Optimization approach, formulating the robust counterpart of the problem as a
mixed integer problem. A specific branch-and-cut algorithm was implemented to solve the problem. The algorithm was tested
on a set of problems generated from state-of-the-art instances of the deterministic version of the problem. The computational
results suggest: (1) the RO model allows to provide robustness to the solutions since even if uncertainty is considered in most
of problem parameters the obtained solutions do not change considerably, and (2) the algorithmic performance is strongly
influenced by the two model parameters, I'r and I'y,. A possible direction for future work could be the development of some
algorithmic strategy to reduce this dependance in order to improve the algorithmic performance and be able to solve more
challenging instances for any value of I'g and 'y in a reasonable time.



AVERAGE RESULTS OBTAINED FOR THE GROUP C-0.1-0.1 OF INSTANCES.

AVERAGE RESULTS OBTAINED FOR THE GROUP D-0.1-0.1 OF INSTANCES.

I'v Ty (s) #euts #BBn  E(T) R(T) %AROPT
0 0 061 208 0 100 66 0
0 5 08 234 0 99 66 0.87
0 10 090 242 0 99 66 129
0 25 106 305 0 99 65 1.85
5 0 0665 228 0 100 66 119
5 5 089 243 0 99. 66 2.06
5 10 097 270 0 99 66 2.49
5 25 104 309 0 98 65 3.00
0 0 064 238 0 100 66 1.40
0 5 087 226 0 100 66 227
10 10 100 281 0 99 66 270
10 25 110 336 0 99 65 321
25 0 065 243 0 100 66 165
25 5 087 227 0 100 66 2.53
25 10 100 275 0 100 66 2.96
25 25 104 306 0 99 66 347
TABLE I
I'v TIp s) #outs #BBn E(T) R(T) %AROPT
0 0 469 726 0 198 28 0
0 5 935 765 0 198 129 0.68
0 10 959 836 0 198 129 1.03
0 25 832 823 0 196 128 1.51
50 49 682 0 199 130 0.89
5 5 950 764 0 198 129 1.58
5 10 908 773 0 198 129 1.94
5 25 1009 911 1 196 128 2.43
10 0 48 7% 0 199 130 .03
10 5 878 734 0 198 129 176
10 10 984 830 0 198 130 2.13
10 25 910 756 1 197 128 2.61
25 0 484 713 0 199 130 1.26
25 5 895 69 0 199 130 1.95
25 10 870 650 1 199 130 231
25 25 941 814 0 197 129 2.79
TABLE 1T
I'v Ty t(s) #euts #BBn E(T) R(T) %AROPT
0 0 1247 11718 0 2 9 0
0 5 1757 1319 3 12 9 052
0 10 1919 1335 6 12 9 0.65
0 25 2224 1398 6 12 9 0.78
5 0 1476 1355 0 2 9 249
5 5 1769 1370 3 12 9 3.02
5 10 1965 1373 6 12 9 3.19
5 25 2251 1453 7 12 9 335
10 0 15904 1445 0 2 9 333
10 5 2120 1527 4 13 9 3.86
10 10 2206 1458 6 12 9 4.03
10 25 2401 1480 4 13 9 4.19
25 0 1837 1567 0 2 9 416
25 5 2285 1634 3 13 9 4.69
25 10 2646 1675 7 13 9 4.86
25 25 3104 1637 7 13 9 5.01
TABLE III

AVERAGE RESULTS OBTAINED FOR THE GROUP K-0.1-0.1 OF INSTANCES.



I'y Tp s) #uts #BBn E(T) R(T) %AROPT
0 0 042 92 0 aq 27 0.00
0 5 057 57 1 44 27 0.63
0 10 076 42 2 44 27 1.03
0 25 212 65 12 43 27 1.89
50 050 57 I i 27 039
5 5 066 45 2 44 27 1.06
5 10 101 66 4 44 27 1.44
5 25 366 66 22 44 27 232
0 0 048 76 I i 28 049
10 5 062 39 2 44 27 1.16
10 10 09 40 4 44 27 1.55
10 25 311 66 19 44 27 242
25 0 040 71 0 5 28 053
25 5 058 37 1 44 28 121
25 10 079 53 3 45 28 1.60
25 25 235 66 13 45 27 248

TABLE IV
AVERAGE RESULTS OBTAINED FOR THE GROUP P-0.1-0.1 OF INSTANCES.
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