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Abstract
We consider the problem of deploying a broadband telecommunications system that lays optical fiber

cable from a central office to a number of end-customers. We are dealing with a capacitated network design
problem that requires an installation of fiber optic cables with sufficient capacity to carry the traffic from
the central office to the end-customers. This is the single-source variant of the network loading problem.

In this paper we propose a new compact disaggregated mixed integer programming (MIP) formulation
for the problem. We project out flow variables by introducing Benders’ cuts that are further strengthened
by additional inequalities. The whole procedure is incorporated into a branch-and-cut framework.

In our computational experiments we do see improved gaps, when deploying Benders’ inequalities, at
least in some cases. Reducing the computational cost for separating the Benders’ cuts and improving our
primal heuristic to help closing the gap faster is the main focus of our ongoing effort.

Keywords: Network Loading Problem, Branch-and-Cut, Benders Inequalities

1 Introduction
We consider the problem of deploying a broadband telecommunications system that lays optical fiber cable
from a central office to a number of end-customers. In case of the fiber to the home technology, the end-
customers represent houses, whereas when deploying fiber to the curb technology, the end-customers are usually
multiplexor devices. In both cases, we are dealing with a capacitated network design problem that requires
an installation of fiber optic cables with sufficient capacity to carry the traffic from the central office to the
end-customers. We start with a network without capacities, or with some pre-installed capacities, and search
for the installation of at most one cable type per link at minimum total cost.

In this paper we provide a theoretical and computational comparison of several mixed integer program-
ming (MIP) formulations for the problem. We also propose a branch-and-cut approach based on the cut-set
inequalities, extended with strengthening Benders’ inequalities.

In our computational experiments we do see improved gaps, when deploying Benders’ inequalities, at least
in some cases. Reducing the computational cost for separating the Benders’ cuts and improving our primal
heuristic to help closing the gap faster is the main focus of our ongoing effort.

Problem Definition We are given an undirected, connected graph Gu(V,E) with a root node r ∈ V , with
edge lengths lij ∈ R>0 ∀{i, j} ∈ E, and a set of customers D ⊆ V \ {r}. To each customer, a non-negative
demand dk ∈ R>0 is assigned. Furthermore, on every edge e ∈ E we are able to install different cable
types (modules) Ne = {n1, n2, . . . , n|Ne|} with capacities ue,n ∈ R>0, 1 ≤ n ≤ |Ne| and costs ce,n ∈ R>0,
1 ≤ n ≤ |Ne|.

The Network Loading Problem (NLP) asks for an installation of at most one cable on each edge at minimum
total cost, so that the demands can be simultaneously routed from the root to all customers without exceeding
installed edge capacities. The problem we are concentrating on is therefore a single-source multiple-sink routing
and a link capacity assignment network design problem.
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Previous Work Due to its importance in telecommunications, transportation, computer and energy supply
networks, NLP has been widely studied in literature. Many authors consider the problem in which a routing
from multiple sources to multiple sinks is required. Polyhedral structures of the general NLP and its variants
are studied in [13, 10, 2, 9, 14, 1]. Benders’ decomposition approaches have been studied as well: for the
multiple-source multiple-sink NLP, an exact algorithm was given in [6], whereas in [3] the objective function
is extended by flow dependent costs. In [7] the authors look into speeding up Benders’ decomposition. The
single-source variant has been studied in [12, 11]. In terms of approximation algorithm (NLP) is also known as
the single-sink buy-at-bulk network design problem. The best approximation ratio of 76.5 is obtained in [8].

Observe that we allow the flow between the root and some customer to be split apart. Therefore, we are
speaking of a non-bifurcated problem formulation.

2 MIP Formulations
Typically, the NLP is modeled using compact flow-based MIP formulations, involving binary design variables
and continuous flow variables. When disaggregating flow variables, we face the problem of trading-off between
the quality of lower bounds and the size of the underlying linear program.

In this section, we first propose a new disaggregated flow-based formulation. Similar ideas for related
problems have been considered in [5, 4]. We then show how to project out flow variables by introducing
Benders inequalities. Finally, we recall the cut-set based ILP formulation whose violated inequalities can be
separated in polynomial time, as far as single-source NLP is concerned.

It is well known that the MIP formulations of NLP and related problems on bidirected graphs provide better
lower bounds than their undirected counterparts. Therefore, we work with directed graphs and transform our
input graph Gu = (V,E) into a directed graph G = (V,A) such that A = {(i, j) | {i, j} ∈ E, j 6= r}. The costs
of the cable types on the arcs remain symmetric, i.e. cij,n = cji,n = c{i,j},n, n ∈ N{i,j}. It easy to see that no
optimal solution of the single-source NLP contains a directed cycle, and therefore, the capacity of every arc
will be used in exactly one direction and we can set uij,n = uji,n = u{i,j},n, n ∈ N{i,j}.

2.1 Multi-Cabletype Multi-Commodity Flow Formulation MMCF

To model the problem, we introduce binary variables xij,n ∈ {0, 1} that are one iff the cable type n ∈ Nij
is installed on the arc (i, j). To model the feasible routing of the traffic between the root r and any single
customer k ∈ D, we use the disaggregated flow variables fkij,n that define the fraction of flow of commodity
k ∈ D, routed on the arc (i, j) using the cable type n ∈ Nij . The MIP model then reads as follows:

(MMCF) min
∑

(i,j)∈A

lij
∑
n∈Nij

cij,nxij,n (1)

s.t.
∑

(i,j)∈A

∑
n∈Nij

fkij,n −
∑

(j,i)∈A

∑
n∈Nji

fkji,n =


−1, i = k

1, i = r

0, otherwise
∀i ∈ V, ∀k ∈ D (2)

∑
k∈D

fkij,ndk ≤ xij,nuij,n ∀(i, j) ∈ A ∀n ∈ Nij (3)∑
n∈Nij

xij,n ≤ 1 ∀(i, j) ∈ A (4)

0 ≤ fkij,n ≤ xij,n ∀(i, j) ∈ A ∀k ∈ D ∀n ∈ Nij (5)

xij,n ∈ {0, 1} ∀(i, j) ∈ A ∀n ∈ Nij (6)

The flow conservation constraints (2) ensure the feasibility of the flow sent from r to every customer k ∈ D.
The coupling constraints (5) take care that, if there is any flow in the cable-type n on the arc (i, j), that cable
type has to be in the solution. Inequalities (3) are the capacity constraints, i.e. the total flow in cable type n
on arc (i, j) must not exceed the capacity of the given cable type n. As cable types are given explicitly, the
disjunction constraints (4) ensure that on every arc at most one cable type is installed.
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This model contains O(|A| · |N | · |D|) constraints and O(|A| · |N | · |D|) variables (|N | = maxe∈E |Ne|), and
it is very unlikely that even the most sophisticated MIP solvers may solve instances of moderate size using
(MMCF) formulation. Our preliminary computational experiments with (MMCF) also confirmed this. How-
ever, (MMCF) provides much stronger lower bounds than its aggregated counterparts. Therefore we propose
to project out the flow variables and to introduce Benders inequalities instead, keeping the quality of lower
bounds, and even improving them by rounding techniques.

It is easy to see that the explicit cost model can be equivalently modelled by using the incremental cost
(or expansion steps) model (see [13]).

2.2 Benders’ Decomposition for MMCF

Let the master problem be the one given by the objective function (1) subject to constraints (4) and (6). A
solution x′ of the master problem defines a feasible solution for the LP-relaxation of the (MMCF) iff there
exist flow variables f satisfying the linear system of inequalities given by (2), (3) and (5), where x = x′.

Farkas’ lemma states that a linear system of equations {Ax ≤ b : x ≥ 0} has a solution iff uT b ≥ 0 for all
u ≥ 0 such that uTA ≥ 0. To apply Farkas’ lemma to the system (2), (3), (5), we define dual variables αki , βkij,n
and γij,n associated to (2), (5) and (3) respectively. The polyhedron defined by this system is non-empty iff

∑
k∈D

(αkr − αkk) +
∑

(i,j)∈A

∑
n∈Nij

(∑
k∈D

βkij,n + uij,nγij,n

)
x′ij,n ≥ 0. (7)

for all (α, β, γ), such that

αki − αkj + βkij,n + dkγij,n ≥ 0 ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij (8)

(α, β, γ) ≥ 0 (9)

Inequalities (7) are called Benders’ cuts. Violated Benders’ inequalities can be separated within a branch-and-
cut framework as follows. Given a fractional solution x′ we minimize the left hand side of (7), s.t. (8)-(9). If
this subproblem (SUB) is unbounded, there is an unboundedness direction (α′, β′, γ′) that defines a violated
Benders’ cut that can be added to the master:∑

(i,j)∈A

∑
n∈Nij

(∑
k∈D

β′kij,n + uij,nγ
′
ij,n

)
xij,n ≥

∑
k∈D

(α′kk − α′kr ) (10)

We can round down the coefficient of variable xij,n to min
(∑

k∈D β
′k
ij,n + uij,nγ

′
ij,n,

∑
k∈D(α′kk − α′kr )

)
. If the

subproblem (SUB) is bounded, it means that we can not find a violated Benders’ cut.

2.3 Strenghtening Benders Inequalities by Metric Inequalities
It has been shown in [3] that any Benders’ inequality associated to a non-extreme ray can be strengthened
to a metric inequality as follows. For any fixed (α′, β′, γ′) satisfying (8)-(9), one can look for (α(β′, γ′), β′, γ′)
that maximizes the right-hand side of (10):

(SPDUAL) max
∑
k∈D

αkk (11)

s.t. β′kij,n + dkγ
′
ij,n ≥ αkj − αki ∀(i, j) ∈ A, ∀k ∈ D, ∀n ∈ Nij (12)

αkr = 0 ∀k ∈ D (13)
α ≥ 0 (14)

This problem can be decomposed into the duals of |D| independent shortest path problems. For any k ∈ D,
αkk(β

′, γ′) is the length of the shortest (r, k) path corresponding to edge weights wkij = minn∈Nij

(
β′kij,n + dkγ

′
ij,n

)
.
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2.4 Directed Cut-Set-Formulation (CUTSET)
We now recall the cut-set formulation for the single-source NLP on directed graphs. For any subset S ⊂ V , we
denote with δ+(S) := {(i, j) ∈ A : i ∈ S, j ∈ V \ S} and δ−(S) := {(i, j) ∈ A : i ∈ V \ S, j ∈ S} outgoing and
ingoing cuts respectively. For any S ⊆ V we denote the induced arc set with A(S) := {(i, j) ∈ A : i ∈ S, j ∈ S}.
Projecting out aggregated flow variables fij =

∑
k∈D

∑
n∈Nij

dkf
k
ij,n leads to the following cut-set inequalities:∑

(i,j)∈δ+(S)

∑
n∈Nij

uij,nxij,n ≥
∑

k∈D\S

dk ∀S ⊂ V : r ∈ S, S ∩D 6= D (15)

Inequalities (15) can be separated in polynomial time. For a given fractional solution x′, we define the
directed support graph G′ = (V ′, A′) where V ′ := V ∪ {t} with an additional sink t and A′ := A1 ∪ A2 being
A1 := {(i, j) ∈ A :

∑
n∈Nij

uij,nx
′
ij,n > 0} and additional arcs A2 := {(k, t) : k ∈ D}. The arc capacities are

set to
∑
n∈Nij

uij,nx
′
ij,n ∀(i, j) ∈ A1 and to dk ∀(k, t) ∈ A2. If the minimum-capacity cut between r and t in

G′ is less than
∑
k∈D dk it defines a violated inequality (15).

2.5 Cover Inequalities
Given a cutset inequality (15) defined by S ⊂ V, r ∈ S, define the index set I(S) = {(i, j, n) | (i, j) ∈ δ+(S), n ∈
Nij} and B =

∑
k∈D\S dk. Set M ⊂ I(S) is called a cover with respect to I(S) if

∑
(i,j,n)∈M uij,n < B and a

maximal cover if, in addition, for all S′ ⊃ M ,
∑

(i,j,n)∈S′ uij,n ≥ B. If M is a maximal cover with respect to
I(S), then the following cover inequalities are valid:∑

(i,j,n)∈I(S)\M

xij,n ≥ 1. (16)

In general, the separation of cover inequalities is NP-hard. We show that for the single-source NLP the problem
of finding the most violated cover inequality (16) is equivalent to solving the precedence constrained knapsack
problem. Assume that indices n ∈ Nij are sorted according to increasing arc capacities and that demands are
integers. To model any cover M with respect to I(S), we introduce the binary variables zij,n that are equal
to one iff (i, j, n) ∈ M . For every arc (i, j) ∈ δ+(S), we define uij,0 = 0. The most violated cover inequality
can then be found by solving the following MIP problem:

(KNAP) max
∑

(i,j,l)∈I(S)

x′ij,nzij,n (17)

∑
(i,j,n)∈I(S)

(uij,n − uij,n−1)zij,n ≤ B − 1 (18)

zij,n ≥ zij,n+1, ∀(i, j, n) ∈ I(S) (19)
zij,n ∈ {0, 1}, ∀(i, j, n) ∈ I(S) (20)

Let z′ be the optimal solution to (KNAP). The corresponding cover inequality then reads as follows:∑
(i,j,n)∈I(S)

(1− z′ij,n)xij,n ≥ 1.

These inequalities are similar to the band inequalities for the incremental cost model in [13].

3 Branch-and-cut approach based on Benders’ Decomposition
In this section we explain the branch-and-cut scheme based on the (CUTSET) formulation and extended by
projected Benders’ inequalities introduced in the last section.

Initialization We initialize the LP with capacitated and uncapacitated in-degree constraints associated to
each customer k ∈ D. Furthermore, for all non-customers l ∈ V \ D \ {r} we add flow-balance constraints:∑

(i,l)∈A,i6=j
∑
n∈Nil

xil,n ≥
∑
n∈Nlj

xlj,n,∀(l, j) ∈ A and
∑

(l,i)∈A,i 6=j
∑
n∈Nli

xli,n ≥
∑
n∈Njl

xjl,n,∀(j, l) ∈ A.
These constraints are valid because an optimal solution to the single source NLP is directed-cycle-free.
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Separation We separate cutset and connectivity inequalities in a straight-forward way using a maximum-
flow procedure. After rounding we add the constraints into the LP. Furthermore, during the separation, we
prefer the minimum-cardinality cuts: they are obtained during separating connectivity inequalities in a graph
in which to every capacity xij,n, an epsilon value is added. By default, up to 100 nested cut-sets are added
at once, before resolving the LP. Finally, to speed-up the separation, using back cuts we also consider reversal
flow, from the customer k to the root r.

After no further violated cut-set inequalities can be found, we separate Benders’ cuts (10), by solving the
linear program (SUB). To speed-up the computation, we add several disjoint Benders’ cuts: after determina-
tion of (α′, β′, γ′) as described in Sec. 2.2, we add constraints βkij,n = 0,∀β′kij,n > 0 and γij,n = 0,∀γ′ij,n > 0
and resolve (SUB).

Primal Heuristic We employ a simple rounding heuristic. Given a feasible fractional solution x, denote
the total installed capacity on each arc by Xij =

∑
n∈Nij

uij,nxij,n. Initialize x′ = 0. Now for every arc (i, j)
install the cheapest fitting cable type x′ij,ñ = 1 : ñ = arg-min{n∈Nij |uij,n≥Xij}cij,n. The resulting x′ is integer
feasible. However, it is often too generous and can be reduced quite simply with the help of the minimum cost
flow algorithm. We define the arc capacities as X ′ij and arc cost of C ′ij =

∑
n∈Nij

cij,nx
′
ij,n and compute the

min-cost-flow f ∈ R|A|. Then we replace the current design x′, with a new cheapest fitting x′′ : x′′ij,ñ = 1 :
ñ = arg-min{n∈Nij |uij,n≥fij}cij,n. Since the min-cost-flow algorithm only works for integer capacity and cost
X ′ and C ′ have to be rounded first.

4 Computational Results

Test Instances We used the street map of the Aus-
trian city Bregenz with 1014 nodes and 1191 edges
as underlying network. As customers we considered
4 different sets of nodes with cardinalities 36, 45, 52
and 67, whereas each customer has a demand ran-
domly chosen from {4, 8, 12, 16, 20}.

CT N (capacity c, cost u) . . .
NA 2 (30, 2.2) (1020, 146.0)
NB 2 (120, 7.0) (1020, 146.0)
NC 3 (30, 2.2) (60, 4.0) (1020, 146.0)
ND 4 (30, 2.2) (60, 4.0) (120, 7.0) (1020, 146.0)

As cable types we employed 4 different sets uniformly on all edges (see the table above). The resulting networks
have been preprocessed by applying degree one- and two-tests.

Experiments We implemented our algorithms using C++ and CPLEX 11.0. An Intel Core 2 computer with
1.8 Ghz and 3.25 GB was used for testing purposes. We tried to solve the test instances with three different
MIP models (MMCF), (MCF), i.e. flow aggregated by cable type (fkij =

∑
n∈Nij

fkij,n) and (SCF), i.e. flow
aggregated by cable type and customer (fij =

∑
k∈D f

k
ij). We compared these results to three branch-and-cut

approaches: (CUTSET), (BEND), which additionally generates Benders’ cuts if no cut-sets are found and
(SBEND), which uses (SCF) as master problem and generates Benders’ cuts in the root node and in every
10-th branch-and-bound node. (MMCF) and (MCF) were unable to produce any reasonable bounds - usually
the LP relaxation was not solved within an hour. Table 1 compares the results of the other four approaches.

Conclusion It can easily be shown that (CUTSET) is stronger than (SCF). Similarly, (MMCF), resp.
(BEND) is stronger than (CUTSET). Neverthelss, the branch-and-cut approaches could usually not supersede
the bounds and gaps achieved with branch-and-bound on the (SCF) model. This is surprising, since the
aggregated flow formulation is known to have arbitrarily bad lower bounds. It can probably be explained
by very sophisticated mixed integer rounding (MIR) cuts and other advanced procedures integrated into the
commercial MIP solver CPLEX 11. Indeed, after turning off all these features, the (SCF) model is not able
to produce any reasonable results. (SBEND) attempts to combine the practically successful (SCF) with the
computationally more expensive, stronger cuts of (BEND). This works out to some degree, in 5 out of 16
cases (SBEND) produces a better lower bound than (SCF). While the lower bound after the root note is
much better for (SBEND) than for (SCF), it seems that the rounding heuristic does not work so well for the
branch-and-cut approaches.
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Inst (CUTSET) (BEND) (SCF) (SBEND)
|D| |N| CT |V| |E| UB Gap Nodes Gap Nodes Gap Nodes Gap Nodes
33 2 NB 325 490 (b,s)174491.6 ∗0.01 1455 0.58 164 ∗0.01 30557 0.36 2070
33 2 NA 325 490 (b)820199.8 2.94 104 3.65 23 0.91 2482 0.63 1130
33 3 NC 325 490 (-)193829.3 2.42 60 2.66 24 0.73 7393 0.75 896
33 4 ND 325 490 (s)85042.3 4.77 10 3.87 4 2.56 2055 2.60 610
41 2 NB 333 498 (c)206863.2 0.20 3104 0.60 145 ∗0.01 7079 ∗0.01 1194
41 2 NA 333 498 (c,s,b)940819.0 10.88 83 11.11 51 8.85 2351 8.46 960
41 3 NC 333 498 (s)230446.0 9.33 10 9.20 5 1.33 2684 3.13 420
41 4 ND 333 498 (s)103786.2 4.72 9 4.22 5 2.42 1557 2.35 540
46 2 NB 340 506 (-)264733.3 0.56 1001 1.27 92 0.12 15559 0.38 815
46 2 NA 340 506 (-)1835563.3 9.71 61 8.55 11 9.68 2265 9.36 800
46 3 NC 340 506 (-)634915.8 3.87 1 3.80 2 1.10 1550 2.36 310
46 4 ND 340 506 (-)150067.4 4.49 19 3.98 7 2.18 1961 2.21 610
61 2 NB 351 516 (-)238483.8 1.22 712 1.76 60 0.40 13139 0.81 510
61 2 NA 351 516 (-)1889229.2 10.22 104 10.59 36 9.73 1293 9.90 999
61 3 NC 351 516 (-)633880.8 6.55 5 6.60 3 2.76 1494 3.87 410
61 4 ND 351 516 (-)141349.6 4.31 9 4.09 7 2.13 2101 2.14 700

Table 1: The best known upper bounds are given in UB and marked with (c),(b) and (s), when found by
(CUTSET), (SBEND) or (SCF). For each approach we show the integrality gap Gap = UB−LB

LB ·100%, where
LB is the best lower bound computed within the time limit of one hour. Nodes denotes the number of
branch-and-bound nodes that have been processed. Optimal solutions are denoted by (*).

Future work will concentrate on improving or replacing the primal heuristic and investigating other classes
of cuts to strengthen/speedup branch-and-cut.
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